

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Notes

 FOR B.TECH IV YEAR - II SEM(R17)

 (2019-20)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade -

ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100,

Telangana State, INDIA.

Sno Subject Code Subject Name

1 R15A0543 Software Project Management

2 R15A0539 WEB SERVICES

I

 Software Project Management

[R15A0543]

LECTURE NOTES

B.TECH IV YEAR – II SEM(R15)
(2018-19)

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

II

IV Year B. Tech. CSE – II Sem L T/P/D C
 4 - /- / - 4

(R15A0543) SOFTWARE PROJECT MANAGEMENT

(Core Elective-VI)

Objectives:

 Understanding the specific roles within a software organization as related to project and
process management

 Understanding the basic infrastructure competences (e.g., process modeling and
measurement)

 Understanding the basic steps of project planning, project management, quality assurance,
and process management and their relationships

UNIT-I
Conventional Software Management: The waterfall Model, Conventional Software
Management Performance,
Evolution of Software Economics: software Economics. Pragmatic Software Cost Estimation.
Improving Software Economics: Reducing Software Product Size, Improving Software
Processes, Improving Team Effectiveness, Improving Automation, Achieving Required Quality,
Peer Inspections.
UNIT-II
Conventional and Modern Software Management: Principles of Conventional Software
Engineering, Principles of Modern Software Management, Transitioning to an interactive
Process.
Life Cycle Phases: Engineering and Production Stages Inception, Elaboration, Construction,
Transition phases.
UNIT-III
Artifacts of the Process: The Artifact Sets. Management Artifacts, Engineering Artifacts,
Programmatic Artifacts.
Model Based Software Architectures: A Management Perspective and Technical Perspective.
UNIT-IV
Flows of the Process: Software Process Workflows. Inter Trans Workflows.
Checkpoints of the Process: Major Mile Stones, Minor Milestones, Periodic Status
Assessments.
Interactive Process Planning: Work Breakdown Structures, Planning Guidelines, Cost and
Schedule Estimating. Interaction Planning Process, Pragmatic Planning.
UNIT-V
Project Organizations and Responsibilities: Line-of-Business Organizations, Project
Organizations, and Evolution of Organizations.
Process Automation: Building Blocks, the Project Environment.
Project Control and Process Instrumentation: Server Care Metrics, Management Indicators,
Quality Indicators, Life Cycle Expectations Pragmatic Software

III

TEXT BOOKS:

1. Walker Rayce, “Software Project Management”, 1998, PEA.

2. Henrey, “Software Project Management”, Pearson.

Reference Books:

1. Richard H.Thayer.” Software Engineering Project Management”, 1997, IEEE Computer

Society.

2. Shere K.D.: “Software Engineering and Management”, 1998, PHI.

3. S.A. Kelkar, “Software Project Management: A Concise Study”, PHI.
4. Hughes Cotterell, “Software Project Management”, 2e, TMH. 88 5. Kaeron Conway,

“Software Project Management from Concept to D

Outcomes:
At the end of the course, the student shall be able to:

 Describe and determine the purpose and importance of project management from the
perspectives of planning, tracking and completion of project

 Compare and differentiate organization structures and project structures.

 Implement a project to manage project schedule, expenses and resource with the
application of suitable project management tools

IV

INDEX

UNIT NO TOPIC PAGE NO

I

Conventional Software Management 01 - 06

Evolution of Software Economics 07 - 10

Improving Software Economics 10 - 18

II
Conventional and Modern Software Management 19 - 23

Life cycle phases 24 - 28

III
Artifacts of the process 29 – 39

Model based software architectures 40 – 42

IV

Work Flows of the process 43 – 47

Checkpoints of the process 48 – 52

Iterative Process Planning 52 – 60

V

Project Organizations and Responsibilities 61 – 63

Process Automation 64 – 69

Project Control and Process Instrumentation 69 - 75

 1

UNIT – I

Conventional Software Management: The waterfall model, conventional software Management performance.

Evolution of Software Economics: Software Economics, pragmatic software cost estimation.

Improving Software Economics: Reducing Software product size, improving software processes, improving team

effectiveness, improving automation, Achieving required quality, peer inspections.

1. Conventional software management
Conventional software management practices are sound in theory, but practice is still tied to archaic (outdated)
technology and techniques.
Conventional software economics provides a benchmark of performance for conventional software manage-
ment principles.
The best thing about software is its flexibility: It can be programmed to do almost anything.
The worst thing about software is also its flexibility: The "almost anything" characteristic has made it difficult
to plan, monitors, and control software development.
Three important analyses of the state of the software engineering industry are

1. Software development is still highly unpredictable. Only about 10% of software projects are
delivered successfully within initial budget and schedule estimates.

2. Management discipline is more of a discriminator in success or failure than are technology advances.
3. The level of software scrap and rework is indicative of an immature process.

All three analyses reached the same general conclusion: The success rate for software projects is very low.
The three analyses provide a good introduction to the magnitude of the software problem and the current
norms for conventional software management performance.

1.1 THE WATERFALL MODEL
Most software engineering texts present the waterfall model as the source of the "conventional" software
process.
1.1.1 IN THEORY
It provides an insightful and concise summary of conventional software management
Three main primary points are

1. There are two essential steps common to the development of computer programs: analysis and
coding.
Waterfall Model part 1: The two basic steps to building a program.

2. In order to manage and control all of the intellectual freedom associated with software development,
one must introduce several other "overhead" steps, including system requirements definition,
software requirements definition, program design, and testing. These steps supplement the analysis
and coding steps. Below Figure illustrates the resulting project profile and the basic steps in
developing a large-scale program.

Analysis and coding both involve creative work that
directly contributes to the usefulness of the end product.

Analysis

Coding

 2

3. The basic framework described in the waterfall model is risky and invites failure. The testing phase

that occurs at the end of the development cycle is the first event for which timing, storage,
input/output transfers, etc., are experienced as distinguished from analyzed. The resulting design
changes are likely to be so disruptive that the software requirements upon which the design is based
are likely violated. Either the requirements must be modified or a substantial design change is
warranted.

Five necessary improvements for waterfall model are:-

1. Program design comes first. Insert a preliminary program design phase between the software
requirements generation phase and the analysis phase. By this technique, the program designer
assures that the software will not fail because of storage, timing, and data flux (continuous
change). As analysis proceeds in the succeeding phase, the program designer must impose on the
analyst the storage, timing, and operational constraints in such a way that he senses the consequences.
If the total resources to be applied are insufficient or if the embryonic(in an early stage of
development) operational design is wrong, it will be recognized at this early stage and the iteration
with requirements and preliminary design can be redone before final design, coding, and test
commences. How is this program design procedure implemented?

The following steps are required:

Begin the design process with program designers, not analysts or programmers.
Design, define, and allocate the data processing modes even at the risk of being wrong. Allocate
processing functions, design the database, allocate execution time, define interfaces and processing
modes with the operating system, describe input and output processing, and define preliminary
operating procedures.
Write an overview document that is understandable, informative, and current so that every worker
on the project can gain an elemental understanding of the system.

2. Document the design. The amount of documentation required on most software programs is quite a lot,
certainly much more than most programmers, analysts, or program designers are willing to do if left to their
own devices. Why do we need so much documentation? (1) Each designer must communicate with interfacing
designers, managers, and possibly customers. (2) During early phases, the documentation is the design. (3) The
real monetary value of documentation is to support later modifications by a separate test team, a separate
maintenance team, and operations personnel who are not software literate.

3. Do it twice. If a computer program is being developed for the first time, arrange matters so that the version

finally delivered to the customer for operational deployment is actually the second version insofar as critical
design/operations are concerned. Note that this is simply the entire process done in miniature, to a time scale

Requirement

Analysis

Design

Coding

Testing

Operation

 3

that is relatively small with respect to the overall effort. In the first version, the team must have a special
broad competence where they can quickly sense trouble spots in the design, model them, model alternatives,
forget the straightforward aspects of the design that aren't worth studying at this early point, and, finally,
arrive at an error-free program.

4. Plan, control, and monitor testing. Without question, the biggest user of project resources-manpower,

computer time, and/or management judgment-is the test phase. This is the phase of greatest risk in terms of
cost and schedule. It occurs at the latest point in the schedule, when backup alternatives are least available, if
at all. The previous three recommendations were all aimed at uncovering and solving problems before
entering the test phase. However, even after doing these things, there is still a test phase and there are still
important things to be done, including: (1) employ a team of test specialists who were not responsible for the
original design; (2) employ visual inspections to spot the obvious errors like dropped minus signs, missing
factors of two, jumps to wrong addresses (do not use the computer to detect this kind of thing, it is too
expensive); (3) test every logic path; (4) employ the final checkout on the target computer.

5. Involve the customer. It is important to involve the customer in a formal way so that he has committed
himself at earlier points before final delivery. There are three points following requirements definition where
the insight, judgment, and commitment of the customer can bolster the development effort. These include a
"preliminary software review" following the preliminary program design step, a sequence of "critical software
design reviews" during program design, and a "final software acceptance review".

1.1.2 IN PRACTICE
Some software projects still practice the conventional software management approach.

It is useful to summarize the characteristics of the conventional process as it has typically been applied,
which is not necessarily as it was intended. Projects destined for trouble frequently exhibit the following
symptoms:

 Protracted integration and late design breakage.
 Late risk resolution.
 Requirements-driven functional decomposition.
 Adversarial (conflict or opposition) stakeholder relationships.
 Focus on documents and review meetings.

Protracted Integration and Late Design Breakage

For a typical development project that used a waterfall model management process, Figure 1-2 illustrates
development progress versus time. Progress is defined as percent coded, that is, demonstrable in its target form.

The following sequence was common:

 Early success via paper designs and thorough (often too thorough) briefings.
 Commitment to code late in the life cycle.
 Integration nightmares (unpleasant experience) due to unforeseen implementation issues and interface

ambiguities.
 Heavy budget and schedule pressure to get the system working.
 Late shoe-homing of no optimal fixes, with no time for redesign.
 A very fragile, unmentionable product delivered late.

 4

In the conventional model, the entire system was designed on paper, then implemented all at once, then
integrated. Table 1-1 provides a typical profile of cost expenditures across the spectrum of software activities.

Late risk resolution A serious issue associated with the waterfall lifecycle was the lack of early risk resolution.
Figure 1.3 illustrates a typical risk profile for conventional waterfall model projects. It includes four distinct
periods of risk exposure, where risk is defined as the probability of missing a cost, schedule, feature, or quality
goal. Early in the life cycle, as the requirements were being specified, the actual risk exposure was highly
unpredictable.

 5

Requirements-Driven Functional Decomposition: This approach depends on specifying requirements com-
pletely and unambiguously before other development activities begin. It naively treats all requirements as
equally important, and depends on those requirements remaining constant over the software development life
cycle. These conditions rarely occur in the real world. Specification of requirements is a difficult and important
part of the software development process.

Another property of the conventional approach is that the requirements were typically specified in a
functional manner. Built into the classic waterfall process was the fundamental assumption that the software
itself was decomposed into functions; requirements were then allocated to the resulting components. This
decomposition was often very different from a decomposition based on object-oriented design and the use of
existing components. Figure 1-4 illustrates the result of requirements-driven approaches: a software structure
that is organized around the requirements specification structure.

Adversarial Stakeholder Relationships:
The conventional process tended to result in adversarial stakeholder relationships, in large part because of the
difficulties of requirements specification and the exchange of information solely through paper documents that
captured engineering information in ad hoc formats.

 6

The following sequence of events was typical for most contractual software efforts:
1. The contractor prepared a draft contract-deliverable document that captured an intermediate artifact

and delivered it to the customer for approval.

 2. The customer was expected to provide comments (typically within 15 to 30 days).

3. The contractor incorporated these comments and submitted (typically within 15 to 30 days) a final
version for approval.

This one-shot review process encouraged high levels of sensitivity on the part of customers and contractors.

Focus on Documents and Review Meetings:
The conventional process focused on producing various documents that attempted to describe the software
product, with insufficient focus on producing tangible increments of the products themselves. Contractors
were driven to produce literally tons of paper to meet milestones and demonstrate progress to stakeholders,
rather than spend their energy on tasks that would reduce risk and produce quality software. Typically,
presenters and the audience reviewed the simple things that they understood rather than the complex and
important issues. Most design reviews therefore resulted in low engineering value and high cost in terms of the
effort and schedule involved in their preparation and conduct. They presented merely a facade of progress.
Table 1-2 summarizes the results of a typical design review.

1.2 CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE
Barry Boehm's "Industrial Software Metrics Top 10 List” is a good, objective characterization of the state of

software development.
1. Finding and fixing a software problem after delivery costs 100 times more than finding and fixing the

problem in early design phases.
2. You can compress software development schedules 25% of nominal, but no more.
3. For every $1 you spend on development, you will spend $2 on maintenance.
4. Software development and maintenance costs are primarily a function of the number of source lines

of code.
5. Variations among people account for the biggest differences in software productivity.
6. The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85; in 1985, 85:15.
7. Only about 15% of software development effort is devoted to programming.
8. Software systems and products typically cost 3 times as much per SLOC as individual software

programs. Software-system products (i.e., system of systems) cost 9 times as much.
9. Walkthroughs catch 60% of the errors

10. 80% of the contribution comes from 20% of the contributors.

 7

2.Evolution of Software Economics

 2.1 SOFTWARE ECONOMICS

Most software cost models can be abstracted into a function of five basic parameters: size, process, personnel,
environment, and required quality.

1. The size of the end product (in human-generated components), which is typically quantified in terms
of the number of source instructions or the number of function points required to develop the
required functionality

2. The process used to produce the end product, in particular the ability of the process to avoid non-
value-adding activities (rework, bureaucratic delays, communications overhead)

3. The capabilities of software engineering personnel, and particularly their experience with the
computer science issues and the applications domain issues of the project

4. The environment, which is made up of the tools and techniques available to support efficient
software development and to automate the process

5. The required quality of the product, including its features, performance, reliability, and adaptability

The relationships among these parameters and the estimated cost can be written as follows:

Effort = (Personnel) (Environment) (Quality) (Sizeprocess)

One important aspect of software economics (as represented within today's software cost models) is that
the relationship between effort and size exhibits a diseconomy of scale. The diseconomy of scale of software
development is a result of the process exponent being greater than 1.0. Contrary to most manufacturing
processes, the more software you build, the more expensive it is per unit item.

Figure 2-1 shows three generations of basic technology advancement in tools, components, and processes.
The required levels of quality and personnel are assumed to be constant. The ordinate of the graph refers to
software unit costs (pick your favorite: per SLOC, per function point, per component) realized by an
organization.
The three generations of software development are defined as follows:

1) Conventional: 1960s and 1970s, craftsmanship. Organizations used custom tools, custom processes,
and virtually all custom components built in primitive languages. Project performance was highly
predictable in that cost, schedule, and quality objectives were almost always underachieved.

2) Transition: 1980s and 1990s, software engineering. Organiz:1tions used more-repeatable processes and off-
the-shelf tools, and mostly (>70%) custom components built in higher level languages. Some of the
components (<30%) were available as commercial products, including the operating system, database
management system, networking, and graphical user interface.

3) Modern practices: 2000 and later, software production. This book's philosophy is rooted in the
 use of managed and measured processes, integrated automation environments, and mostly
 (70%) off-the-shelf components. Perhaps as few as 30% of the components need to be custom
 built

Technologies for environment automation, size reduction, and process improvement are not independent of
one another. In each new era, the key is complementary growth in all technologies. For example, the process
advances could not be used successfully without new component technologies and increased tool automation.

 8

Organizations are achieving better economies of scale in successive technology eras-with very large projects
(systems of systems), long-lived products, and lines of business comprising multiple similar projects. Figure 2-2
provides an overview of how a return on investment (ROI) profile can be achieved in subsequent efforts across
life cycles of various domains.

 9

2.2 PRAGMATIC SOFTWARE COST ESTIMATION
One critical problem in software cost estimation is a lack of well-documented case studies of projects that used
an iterative development approach. Software industry has inconsistently defined metrics or atomic units of
measure, the data from actual projects are highly suspect in terms of consistency and comparability. It is hard
enough to collect a homogeneous set of project data within one organization; it is extremely difficult to homog-
enize data across different organizations with different processes, languages, domains, and so on.
There have been many debates among developers and vendors of software cost estimation models and tools.
Three topics of these debates are of particular interest here:

1. Which cost estimation model to use?
2. Whether to measure software size in source lines of code or function points.

3. What constitutes a good estimate?

There are several popular cost estimation models (such as COCOMO, CHECKPOINT, ESTIMACS,

Knowledge Plan, Price-S, ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20), CO COMO is also one of the

 10

most open and well-documented cost estimation models. The general accuracy of conventional cost models

(such as COCOMO) has been described as "within 20% of actuals, 70% of the time."
Most real-world use of cost models is bottom-up (substantiating a target cost) rather than top-down

(estimating the "should" cost). Figure 2-3 illustrates the predominant practice: The software project manager
defines the target cost of the software, and then manipulates the parameters and sizing until the target cost can
be justified. The rationale for the target cost maybe to win a proposal, to solicit customer funding, to attain
internal corporate funding, or to achieve some other goal.
The process described in Figure 2-3 is not all bad. In fact, it is absolutely necessary to analyze the cost risks and
understand the sensitivities and trade-offs objectively. It forces the software project manager to examine the
risks associated with achieving the target costs and to discuss this information with other stakeholders.
A good software cost estimate has the following attributes:
 It is conceived and supported by the project manager, architecture team, development team, and test

team accountable for performing the work.

 It is accepted by all stakeholders as ambitious but realizable.

 It is based on a well-defined software cost model with a credible basis.

 It is based on a database of relevant project experience that includes similar processes, similar
technologies, similar environments, similar quality requirements, and similar people.

 It is defined in enough detail so that its key risk areas are understood and the probability of success is
objectively assessed.

Extrapolating from a good estimate, an ideal estimate would be derived from a mature cost model with an
experience base that reflects multiple similar projects done by the same team with the same mature processes
and tools.

3. Improving Software Economics
Five basic parameters of the software cost model are

1.Reducing the size or complexity of what needs to be developed.

2. Improving the development process.

3. Using more-skilled personnel and better teams (not necessarily the same thing).

4. Using better environments (tools to automate the process).

5. Trading off or backing off on quality thresholds.

 11

These parameters are given in priority order for most software domains. Table 3-1 lists some of the

technology developments, process improvement efforts, and management approaches targeted at

improving the economics of software development and integration.

3.1 REDUCING SOFTWARE PRODUCT SIZE

The most significant way to improve affordability and return on investment (ROI) is usually to produce a
product that achieves the design goals with the minimum amount of human-generated source material.
Component-based development is introduced as the general term for reducing the "source" language size to
achieve a software solution.

Reuse, object-oriented technology, automatic code production, and higher order programming languages are all
focused on achieving a given system with fewer lines of human-specified source directives (statements).

size reduction is the primary motivation behind improvements in higher order languages (such as C++, Ada 95,
Java, Visual Basic), automatic code generators (CASE tools, visual modeling tools, GUI builders), reuse of
commercial components (operating systems, windowing environments, database management systems,
middleware, networks), and object-oriented technologies (Unified Modeling Language, visual modeling tools,
architecture frameworks).

The reduction is defined in terms of human-generated source material. In general, when size-reducing
technologies are used, they reduce the number of human-generated source lines.

 12

3.1.1 LANGUAGES

Universal function points (UFPs1) are useful estimators for language-independent, early life-cycle estimates.
The basic units of function points are external user inputs, external outputs, internal logical data groups,
external data interfaces, and external inquiries. SLOC metrics are useful estimators for software after a
candidate solution is formulated and an implementation language is known. Substantial data have been
documented relating SLOC to function points. Some of these results are shown in Table 3-2.

Languages expressiveness of some of today’s popular languages

LANGUAGES SLOC per
UFP

Assembly 320

C 128

FORTAN77 105

COBOL85 91

Ada83 71

C++ 56

Ada95 55

Java 55

Visual Basic 35

Table 3-2

3.1.2 OBJECT-ORIENTED METHODS AND VISUAL MODELING

Object-oriented technology is not germane to most of the software management topics discussed here, and
books on object-oriented technology abound. Object-oriented programming languages appear to benefit both
software productivity and software quality. The fundamental impact of object-oriented technology is in
reducing the overall size of what needs to be developed.
People like drawing pictures to explain something to others or to themselves. When they do it for software
system design, they call these pictures diagrams or diagrammatic models and the very notation for them a
modeling language.

These are interesting examples of the interrelationships among the dimensions of improving software eco-
nomics.

1. An object-oriented model of the problem and its solution encourages a common vocabulary between
the end users of a system and its developers, thus creating a shared understanding of the problem
being solved.

2. The use of continuous integration creates opportunities to recognize risk early and make incremental
corrections without destabilizing the entire development effort.

3. An object-oriented architecture provides a clear separation of concerns among disparate elements of a
system, creating firewalls that prevent a change in one part of the system from rending the fabric of
the entire architecture.

1 Function point metrics provide a standardized method for measuring the various functions of a software application.
The basic units of function points are external user inputs, external outputs, internal logical data groups, external data interfaces, and
external inquiries.

 13

Booch also summarized five characteristics of a successful object-oriented project.

1. A ruthless focus on the development of a system that provides a well understood collection of essential
minimal characteristics.

2. The existence of a culture that is centered on results, encourages communication, and yet is not afraid

to fail.

3. The effective use of object-oriented modeling.

4. The existence of a strong architectural vision.
5. The application of a well-managed iterative and incremental development life cycle.

3.1.3 REUSE

Reusing existing components and building reusable components have been natural software engineering
activities since the earliest improvements in programming languages. With reuse in order to minimize
development costs while achieving all the other required attributes of performance, feature set, and quality. Try
to treat reuse as a mundane part of achieving a return on investment.

Most truly reusable components of value are transitioned to commercial products supported by
organizations with the following characteristics:

 They have an economic motivation for continued support.

 They take ownership of improving product quality, adding new features, and transitioning to new
technologies.

 They have a sufficiently broad customer base to be profitable.

The cost of developing a reusable component is not trivial. Figure 3-1 examines the economic trade-offs. The
steep initial curve illustrates the economic obstacle to developing reusable components.

Reuse is an important discipline that has an impact on the efficiency of all workflows and the quality of most
artifacts.

 14

3.1.4 COMMERCIAL COMPONENTS
A common approach being pursued today in many domains is to maximize integration of commercial
components and off-the-shelf products. While the use of commercial components is certainly desirable as a
means of reducing custom development, it has not proven to be straightforward in practice. Table 3-3 identifies
some of the advantages and disadvantages of using commercial components.

3.2 IMPROVING SOFTWARE PROCESSES

Process is an overloaded term. Three distinct process perspectives are.

 Metaprocess: an organization's policies, procedures, and practices for pursuing a software-intensive
line of business. The focus of this process is on organizational economics, long-term strategies, and
software ROI.

 Macroprocess: a project's policies, procedures, and practices for producing a complete software
product within certain cost, schedule, and quality constraints. The focus of the macro process is on
creating an adequate instance of the Meta process for a specific set of constraints.

 Microprocess: a project team's policies, procedures, and practices for achieving an artifact of the
software process. The focus of the micro process is on achieving an intermediate product baseline
with adequate quality and adequate functionality as economically and rapidly as practical.

Although these three levels of process overlap somewhat, they have different objectives, audiences, metrics,
concerns, and time scales as shown in Table 3-4

 15

In a perfect software engineering world with an immaculate problem description, an obvious solution space, a

development team of experienced geniuses, adequate resources, and stakeholders with common goals, we

could execute a software development process in one iteration with almost no scrap and rework. Because we

work in an imperfect world, however, we need to manage engineering activities so that scrap and rework

profiles do not have an impact on the win conditions of any stakeholder. This should be the underlying

premise for most process improvements.

3.3 IMPROVING TEAM EFFECTIVENESS
Teamwork is much more important than the sum of the individuals. With software teams, a project manager
needs to configure a balance of solid talent with highly skilled people in the leverage positions. Some maxims
of team management include the following:
 A well-managed project can succeed with a nominal engineering team.
 A mismanaged project will almost never succeed, even with an expert team of engineers.
 A well-architected system can be built by a nominal team of software builders.
 A poorly architected system will flounder even with an expert team of builders.

 16

Boehm five staffing principles are
1. The principle of top talent: Use better and fewer people

2. The principle of job matching: Fit the tasks to the skills and motivation of the people available.

3. The principle of career progression: An organization does best in the long run by helping its people
to self-actualize.

4. The principle of team balance: Select people who will complement and harmonize with one another
5. The principle of phase-out: Keeping a misfit on the team doesn't benefit anyone

Software project managers need many leadership qualities in order to enhance team effectiveness. The
following are some crucial attributes of successful software project managers that deserve much more attention:

1. Hiring skills. Few decisions are as important as hiring decisions. Placing the right person in the right
job seems obvious but is surprisingly hard to achieve.

2. Customer-interface skill. Avoiding adversarial relationships among stakeholders is a prerequisite for
success.

Decision-making skill. The jillion books written about management have failed to provide a clear
definition of this attribute. We all know a good leader when we run into one, and decision-making
skill seems obvious despite its intangible definition.

Team-building skill. Teamwork requires that a manager establish trust, motivate progress, exploit
eccentric prima donnas, transition average people into top performers, eliminate misfits, and
consolidate diverse opinions into a team direction.

Selling skill. Successful project managers must sell all stakeholders (including themselves) on decisions
and priorities, sell candidates on job positions, sell changes to the status quo in the face of resistance, and
sell achievements against objectives. In practice, selling requires continuous negotiation, compromise,
and empathy

 3.4 IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS

The tools and environment used in the software process generally have a linear effect on the productivity
of the process. Planning tools, requirements management tools, visual modeling tools, compilers, editors,
debuggers, quality assurance analysis tools, test tools, and user interfaces provide crucial automation support
for evolving the software engineering artifacts. Above all, configuration management environments provide the
foundation for executing and instrument the process. At first order, the isolated impact of tools and automation
generally allows improvements of 20% to 40% in effort. However, tools and environments must be viewed as
the primary delivery vehicle for process automation and improvement, so their impact can be much higher.

 Automation of the design process provides payback in quality, the ability to estimate costs and
schedules, and overall productivity using a smaller team.
Round-trip engineering describes the key capability of environments that support iterative development. As we
have moved into maintaining different information repositories for the engineering artifacts, we need
automation support to ensure efficient and error-free transition of data from one artifact to another. Forward
engineering is the automation of one engineering artifact from another, more abstract representation. For
example, compilers and linkers have provided automated transition of source code into executable code.
Reverse engineering is the generation or modification of a more abstract representation from an existing artifact
(for example, creating a visual design model from a source code representation).
Economic improvements associated with tools and environments. It is common for tool vendors to make rela-
tively accurate individual assessments of life-cycle activities to support claims about the potential economic
impact of their tools. For example, it is easy to find statements such as the following from companies in a
particular tool.

 Requirements analysis and evolution activities consume 40% of life-cycle costs.

 Software design activities have an impact on more than 50% of the resources.

 Coding and unit testing activities consume about 50% of software development effort and schedule.

 17

 Test activities can consume as much as 50% of a project's resources.

 Configuration control and change management are critical activities that can consume as much as
25% of resources on a large-scale project.

 Documentation activities can consume more than 30% of project engineering resources.

 Project management, business administration, and progress assessment can consume as much as 30%
of project budgets.

3.5 ACHIEVING REQUIRED QUALITY
Software best practices are derived from the development process and technologies. Table 3-5 summarizes
some dimensions of quality improvement.

Key practices that improve overall software quality include the following:

 Focusing on driving requirements and critical use cases early in the life cycle, focusing on
requirements completeness and traceability late in the life cycle, and focusing throughout the life cycle
on a balance between requirements evolution, design evolution, and plan evolution

 Using metrics and indicators to measure the progress and quality of an architecture as it evolves from
a high-level prototype into a fully compliant product

 Providing integrated life-cycle environments that support early and continuous configuration control,
change management, rigorous design methods, document automation, and regression test automation

 Using visual modeling and higher level languages that support architectural control, abstraction,
reliable programming, reuse, and self-documentation

 Early and continuous insight into performance issues through demonstration-based evaluations

 18

Conventional development processes stressed early sizing and timing estimates of computer program
resource utilization. However, the typical chronology of events in performance assessment was as follows

 Project inception. The proposed design was asserted to be low risk with adequate performance
margin.

 Initial design review. Optimistic assessments of adequate design margin were based mostly on paper
analysis or rough simulation of the critical threads. In most cases, the actual application algorithms
and database sizes were fairly well understood.

 Mid-life-cycle design review. The assessments started whittling away at the margin, as early
benchmarks and initial tests began exposing the optimism inherent in earlier estimates.

 Integration and test. Serious performance problems were uncovered, necessitating fundamental
changes in the architecture. The underlying infrastructure was usually the scapegoat, but the real
culprit was immature use of the infrastructure, immature architectural solutions, or poorly understood
early design trade-offs.

3.6 PEER INSPECTIONS: A PRAGMATIC VIEW

Peer inspections are frequently over hyped as the key aspect of a quality system. In my experience, peer reviews
are valuable as secondary mechanisms, but they are rarely significant contributors to quality compared with the
following primary quality mechanisms and indicators, which should be emphasized in the management process:

 Transitioning engineering information from one artifact set to another, thereby assessing the consistency,
feasibility, understandability, and technology constraints inherent in the engineering artifacts

 Major milestone demonstrations that force the artifacts to be assessed against tangible criteria in the
context of relevant use cases

 Environment tools (compilers, debuggers, analyzers, automated test suites) that ensure representation
rigor, consistency, completeness, and change control

 Life-cycle testing for detailed insight into critical trade-offs, acceptance criteria, and requirements
compliance

 Change management metrics for objective insight into multiple-perspective change trends and
convergence or divergence from quality and progress goals

Inspections are also a good vehicle for holding authors accountable for quality products. All authors of
software and documentation should have their products scrutinized as a natural by-product of the process.
Therefore, the coverage of inspections should be across all authors rather than across all components.

 19

UNIT – II

Conventional and Modern Software Management: The principles of conventional software Engineering,
principles of modern software management, transitioning to an iterative process.
Life cycle phases: Engineering and Production stages, Inception, Elaboration, Construction, Transition Phases.

4. CONVENTIONAL AND MODERN SOFTWARE MANAGEMENT

4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

1.Make quality Quality must be quantified and mechanisms put into place to motivate its achievement

2.High-quality software is possible. Techniques that have been demonstrated to increase quality include

involving the customer, prototyping, simplifying design, conducting inspections, and hiring the best people

3.Give products to customers early. No matter how hard you try to learn users' needs during the requirements

phase, the most effective way to determine real needs is to give users a product and let them play with it

4.Determine the problem before writing the requirements. When faced with what they believe is a problem,

most engineers rush to offer a solution. Before you try to solve a problem, be sure to explore all the alternatives

and don't be blinded by the obvious solution

5.Evaluate design alternatives. After the requirements are agreed upon, you must examine a variety of

architectures and algorithms. You certainly do not want to use” architecture" simply because it was used in the

requirements specification.

6.Use an appropriate process model. Each project must select a process that makes ·the most sense for that

project on the basis of corporate culture, willingness to take risks, application area, volatility of requirements, and

the extent to which requirements are well understood.

7.Use different languages for different phases. Our industry's eternal thirst for simple solutions to complex

problems has driven many to declare that the best development method is one that uses the same notation through-

out the life cycle.

8.Minimize intellectual distance. To minimize intellectual distance, the software's structure should be as close as

possible to the real-world structure

9.Put techniques before tools. An undisciplined software engineer with a tool becomes a dangerous,

undisciplined software engineer

10.Get it right before you make it faster. It is far easier to make a working program run faster than it is to make

a fast program work. Don't worry about optimization during initial coding

11.Inspect code. Inspecting the detailed design and code is a much better way to find errors than testing

12.Good management is more important than good technology. Good management motivates people to do

their best, but there are no universal "right" styles of management.

 20

13.People are the key to success. Highly skilled people with appropriate experience, talent, and training are key.

14.Follow with care. Just because everybody is doing something does not make it right for you. It may be right,

but you must carefully assess its applicability to your environment.

15.Take responsibility. When a bridge collapses we ask, "What did the engineers do wrong?" Even when

software fails, we rarely ask this. The fact is that in any engineering discipline, the best methods can be used to

produce awful designs, and the most antiquated methods to produce elegant designs.

16.Understand the customer's priorities. It is possible the customer would tolerate 90% of the functionality

delivered late if they could have 10% of it on time.

17.The more they see, the more they need. The more functionality (or performance) you provide a user, the

more functionality (or performance) the user wants.

18. Plan to throw one away. One of the most important critical success factors is whether or not a product is

entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first time.

19. Design for change. The architectures, components, and specification techniques you use must accommodate

change.

20. Design without documentation is not design. I have often heard software engineers say, "I have finished the

design. All that is left is the documentation. "

21. Use tools, but be realistic. Software tools make their users more efficient.

22. Avoid tricks. Many programmers love to create programs with tricks constructs that perform a function

correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code

23. Encapsulate. Information-hiding is a simple, proven concept that results in software that is easier to test

and much easier to maintain.

24. Use coupling and cohesion. Coupling and cohesion are the best ways to measure software's inherent

maintainability and adaptability

25. Use the McCabe complexity measure. Although there are many metrics available to report the inherent

complexity of software, none is as intuitive and easy to use as Tom McCabe's

26.Don't test your own software. Software developers should never be the primary testers of their own

software.

27.Analyze causes for errors. It is far more cost-effective to reduce the effect of an error by preventing it than it

is to find and fix it. One way to do this is to analyze the causes of errors as they are detected

28.Realize that software's entropy increases. Any software system that undergoes continuous change will grow

in complexity and will become more and more disorganized

29.People and time are not interchangeable. Measuring a project solely by person-months makes little sense

30.Expect excellence. Your employees will do much better if you have high expectations for them.

 21

4.2 THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

Top 10 principles of modern software management are. (The first five, which are the main themes of my definition of an
iterative process, are summarized in Figure 4-1.)

1. Base the process on an architecture-first approach. This requires that a demonstrable balance be
achieved among the driving requirements, the architecturally significant design decisions, and the life-
cycle plans before the resources are committed for full-scale development.

2. Establish an iterative life-cycle process that confronts risk early. With today's sophisticated software
systems, it is not possible to define the entire problem, design the entire solution, build the software, and
then test the end product in sequence. Instead, an iterative process that refines the problem understanding,
an effective solution, and an effective plan over several iterations encourages a balanced treatment of all
stakeholder objectives. Major risks must be addressed early to increase predictability and avoid expensive
downstream scrap and rework.

3. Transition design methods to emphasize component-based development. Moving from a line-of-
code mentality to a component-based mentality is necessary to reduce the amount of human-generated
source code and custom development.

4. Establish a change management environment. The dynamics of iterative development,

 including concurrent workflows by different teams working on shared artifacts, necessitates objectively
controlled baselines.

 22

 5. Enhance change freedom through tools that support round-trip engineering. Round-trip
engineering is the environment support necessary to automate and synchronize
 engineering information in different formats(such as requirements specifications, design models,
source code, executable code, test cases).
 6. Capture design artifacts in rigorous, model-based notation. A model based approach (such as UML)
supports the evolution of semantically rich graphical and textual design notations.
 7. Instrument the process for objective quality control and progress assessment. Life-cycle assessment
of the progress and the quality of all intermediate products must be integrated into the process.

8. Use a demonstration-based approach to assess intermediate artifacts.
9. Plan intermediate releases in groups of usage scenarios with evolving levels of detail. It is

essential that the software management process drive toward early and continuous demonstrations
within the operational context of the system, namely its use cases.

10. Establish a configurable process that is economically scalable. No single process is suitable for
all software developments.

Table 4-1 maps top 10 risks of the conventional process to the key attributes and principles of a modern
process

 23

4.3 TRANSITIONING TO AN ITERATIVE PROCESS

Modern software development processes have moved away from the conventional waterfall model, in which
each stage of the development process is dependent on completion of the previous stage.

The economic benefits inherent in transitioning from the conventional waterfall model to an iterative
development process are significant but difficult to quantify. As one benchmark of the expected economic
impact of process improvement, consider the process exponent parameters of the COCOMO II model.
(Appendix B provides more detail on the COCOMO model) This exponent can range from 1.01 (virtually no
diseconomy of scale) to 1.26 (significant diseconomy of scale). The parameters that govern the value of the
process exponent are application precedentedness, process flexibility, architecture risk resolution, team
cohesion, and software process maturity.

The following paragraphs map the process exponent parameters of CO COMO II to my top 10 principles of
a modern process.

 Application precedentedness. Domain experience is a critical factor in understanding how to plan and
execute a software development project. For unprecedented systems, one of the key goals is to confront
risks and establish early precedents, even if they are incomplete or experimental. This is one of the primary
reasons that the software industry has moved to an iterative life-cycle process. Early iterations in the life
cycle establish precedents from which the product, the process, and the plans can be elaborated in evolving
levels of detail.

 Process flexibility. Development of modern software is characterized by such a broad solution space and
so many interrelated concerns that there is a paramount need for continuous incorporation of changes.
These changes may be inherent in the problem understanding, the solution space, or the plans. Project
artifacts must be supported by efficient change management commensurate with project needs. A
configurable process that allows a common framework to be adapted across a range of projects is
necessary to achieve a software return on investment.

 Architecture risk resolution. Architecture-first development is a crucial theme underlying a successful
iterative development process. A project team develops and stabilizes architecture before developing all the
components that make up the entire suite of applications components. An architecture-first and
component-based development approach forces the infrastructure, common mechanisms, and control
mechanisms to be elaborated early in the life cycle and drives all component make/buy decisions into the
architecture process.

 Team cohesion. Successful teams are cohesive, and cohesive teams are successful. Successful teams and
cohesive teams share common objectives and priorities. Advances in technology (such as programming
languages, UML, and visual modeling) have enabled more rigorous and understandable notations for
communicating software engineering information, particularly in the requirements and design artifacts that
previously were ad hoc and based completely on paper exchange. These model-based formats have also
enabled the round-trip engineering support needed to establish change freedom sufficient for evolving
design representations.

 Software process maturity. The Software Engineering Institute's Capability Maturity Model (CMM) is a
well-accepted benchmark for software process assessment. One of key themes is that truly mature
processes are enabled through an integrated environment that provides the appropriate level of automation
to instrument the process for objective quality control.

 24

Important questions

1. Explain briefly Waterfall model. Also explain Conventional s/w management performance?

2. Define Software Economics. Also explain Pragmatic s/w cost estimation?

3. Explain Important trends in improving Software economics?

4. Explain five staffing principal offered by Boehm. Also explain Peer Inspections?

5.. Explain principles of conventional software engineering?

6. Explain briefly principles of modern software management

5. Life cycle phases
Characteristic of a successful software development process is the well-defined separation between "research
and development" activities and "production" activities. Most unsuccessful projects exhibit one of the following
characteristics:

 An overemphasis on research and development
 An overemphasis on production.

Successful modern projects-and even successful projects developed under the conventional process-tend to have
a very well-defined project milestone when there is a noticeable transition from a research attitude to a
production attitude. Earlier phases focus on achieving functionality. Later phases revolve around achieving a
product that can be shipped to a customer, with explicit attention to robustness, performance, and finish.
A modern software development process must be defined to support the following:

 Evolution of the plans, requirements, and architecture, together with well defined synchronization
points

 Risk management and objective measures of progress and quality

 Evolution of system capabilities through demonstrations of increasing functionality

5.1 ENGINEERING AND PRODUCTION STAGES

 To achieve economies of scale and higher returns on investment, we must move toward a software
manufacturing process driven by technological improvements in process automation and component-based
development. Two stages of the life cycle are:

1. The engineering stage, driven by less predictable but smaller teams doing design and synthesis
activities

2. The production stage, driven by more predictable but larger teams doing construction, test, and
deployment activities

 25

The transition between engineering and production is a crucial event for the various stakeholders. The
production plan has been agreed upon, and there is a good enough understanding of the problem and the
solution that all stakeholders can make a firm commitment to go ahead with production.
Engineering stage is decomposed into two distinct phases, inception and elaboration, and the production stage
into construction and transition. These four phases of the life-cycle process are loosely mapped to the
conceptual framework of the spiral model as shown in Figure 5-1

5.2 INCEPTION PHASE
The overriding goal of the inception phase is to achieve concurrence among stakeholders on the life-cycle
objectives for the project.

PRIMARY OBJECTIVES

 Establishing the project's software scope and boundary conditions, including an operational concept,
acceptance criteria, and a clear understanding of what is and is not intended to be in the product

 Discriminating the critical use cases of the system and the primary scenarios of operation that will
drive the major design trade-offs

 Demonstrating at least one candidate architecture against some of the primary scenanos

 Estimating the cost and schedule for the entire project (including detailed estimates for the
elaboration phase)

 Estimating potential risks (sources of unpredictability)

 26

ESSENTIAL ACTMTIES

 Formulating the scope of the project. The information repository should be sufficient to define the
problem space and derive the acceptance criteria for the end product.

 Synthesizing the architecture. An information repository is created that is sufficient to demonstrate the
feasibility of at least one candidate architecture and an, initial baseline of make/buy decisions so that
the cost, schedule, and resource estimates can be derived.

 Planning and preparing a business case. Alternatives for risk management, staffing, iteration plans,
and cost/schedule/profitability trade-offs are evaluated.

PRIMARY EVALUATION CRITERIA

 Do all stakeholders concur on the scope definition and cost and schedule estimates?

 Are requirements understood, as evidenced by the fidelity of the critical use cases?

 Are the cost and schedule estimates, priorities, risks, and development processes credible?

 Do the depth and breadth of an architecture prototype demonstrate the preceding criteria? (The
primary value of prototyping candidate architecture is to provide a vehicle for understanding the
scope and assessing the credibility of the development group in solving the particular technical
problem.)

 Are actual resource expenditures versus planned expenditures acceptable

5.2 ELABORATION PHASE

At the end of this phase, the "engineering" is considered complete. The elaboration phase activities must ensure
that the architecture, requirements, and plans are stable enough, and the risks sufficiently mitigated, that the cost
and schedule for the completion of the development can be predicted within an acceptable range. During the
elaboration phase, an executable architecture prototype is built in one or more iterations, depending on the
scope, size, & risk.

PRIMARY OBJECTIVES

 Baselining the architecture as rapidly as practical (establishing a configuration-managed snapshot in which
all changes are rationalized, tracked, and maintained)

 Baselining the vision

 Baselining a high-fidelity plan for the construction phase
 Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonable

time

ESSENTIAL ACTIVITIES

 Elaborating the vision.
 Elaborating the process and infrastructure.
 Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA

 Is the vision stable?

 Is the architecture stable?

 Does the executable demonstration show that the major risk elements have been addressed and credibly
resolved?

 Is the construction phase plan of sufficient fidelity, and is it backed up with a credible basis of estimate?

 Do all stakeholders agree that the current vision can be met if the current plan is executed to develop the

 27

complete system in the context of the current architecture?

 Are actual resource expenditures versus planned expenditures acceptable?

 5.4 CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated into the application, and
all features are thoroughly tested. Newly developed software is integrated where required. The construction phase represents a
production process, in which emphasis is placed on managing resources and controlling operations to optimize costs, schedules,
and quality.

PRIMARY OBJECTIVES

 Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework

 Achieving adequate quality as rapidly as practical

 Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

ESSENTIAL ACTIVITIES

 Resource management, control, and process optimization

 Complete component development and testing against evaluation criteria

 Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

 Is this product baseline mature enough to be deployed in the user community? (Existing defects are
not obstacles to achieving the purpose of the next release.)

 Is this product baseline stable enough to be deployed in the user community? (Pending changes are
not obstacles to achieving the purpose of the next release.)

 Are the stakeholders ready for transition to the user community?

 Are actual resource expenditures versus planned expenditures acceptable?

 5.5 TRANSITION PHASE

The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain. This
typically requires that a usable subset of the system has been achieved with acceptable quality levels and user
documentation so that transition to the user will provide positive results. This phase could include any of the
following activities:

1. Beta testing to validate the new system against user expectations
2. Beta testing and parallel operation relative to a legacy system it is replacing

3. Conversion of operational databases

4. Training of users and maintainers
The transition phase concludes when the deployment baseline has achieved the complete vision.

PRIMARY OBJECTIVES

 Achieving user self-supportability

 Achieving stakeholder concurrence that deployment baselines are complete and consistent with the
evaluation criteria of the vision

 Achieving final product baselines as rapidly and cost-effectively as practical

 28

ESSENTIAL ACTIVITIES

 Synchronization and integration of concurrent construction increments into consistent deployment
baselines

 Deployment-specific engineering (cutover, commercial packaging and production, sales rollout kit
development, field personnel training)

 Assessment of deployment baselines against the complete vision and acceptance criteria in the
requirements set

EVALUATION CRITERIA
 Is the user satisfied?

 Are actual resource expenditures versus planned expenditures acceptable?

 29

UNIT - III
Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.
Model based software architectures: A Management perspective and technical perspective.

6. Artifacts of the process

6.1 THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct collections of information are
organized into artifact sets. Artifact represents cohesive information that typically is developed and reviewed as
a single entity.

Life-cycle software artifacts are organized into five distinct sets that are roughly partitioned by the
underlying language of the set: management (ad hoc textual formats), requirements (organized text and models
of the problem space), design (models of the solution space), implementation (human-readable programming
language and associated source files), and deployment (machine-process able languages and associated files).
The artifact sets are shown in Figure 6-1.

6.1.1 THE MANAGEMENT SET
The management set captures the artifacts associated with process planning and execution. These artifacts
use ad hoc notations, including text, graphics, or whatever representation is required to capture the
"contracts" among project personnel (project management, architects, developers, testers, marketers,
administrators), among stakeholders (funding authority, user, software project manager, organization
manager, regulatory agency), and between project personnel and stakeholders. Specific artifacts included
in this set are the work breakdown structure (activity breakdown and financial tracking mechanism), the
business case (cost, schedule, profit expectations), the release specifications (scope, plan, objectives for
release baselines), the software development plan (project process instance), the release descriptions
(results of release baselines), the status assessments (periodic snapshots of project progress), the software
change orders (descriptions of discrete baseline changes), the deployment documents (cutover plan,
training course, sales rollout kit), and the environment (hardware and software tools, process
automation, & documentation).

 30

Management set artifacts are evaluated, assessed, and measured through a combination of the following:
 Relevant stakeholder review
 Analysis of changes between the current version of the artifact and previous versions
 Major milestone demonstrations of the balance among all artifacts and, in particular, the accuracy of

the business case and vision artifacts

6.1.2 THE ENGINEERING SETS

The engineering sets consist of the requirements set, the design set, the implementation set, and the
deployment set.
Requirements Set

Requirements artifacts are evaluated, assessed, and measured through a combination of the following:

 Analysis of consistency with the release specifications of the management set

 Analysis of consistency between the vision and the requirements models

 Mapping against the design, implementation, and deployment sets to evaluate the consistency and
completeness and the semantic balance between information in the different sets

 Analysis of changes between the current version of requirements artifacts and previous versions
(scrap, rework, and defect elimination trends)

 Subjective review of other dimensions of quality

Design Set

UML notation is used to engineer the design models for the solution. The design set contains varying levels
of abstraction that represent the components of the solution space (their identities, attributes, static
relationships, dynamic interactions). The design set is evaluated, assessed, and measured through a combination
of the following:

 Analysis of the internal consistency and quality of the design model
 Analysis of consistency with the requirements models
 Translation into implementation and deployment sets and notations (for example, traceability, source

code generation, compilation, linking) to evaluate the consistency and completeness and the semantic
balance between information in the sets

 Analysis of changes between the current version of the design model and previous versions (scrap,
rework, and defect elimination trends)

 Subjective review of other dimensions of quality
Implementation set
The implementation set includes source code (programming language notations) that represents the tangible

implementations of components (their form, interface, and dependency relationships)
Implementation sets are human-readable formats that are evaluated, assessed, and measured through a

combination of the following:
 Analysis of consistency with the design models
 Translation into deployment set notations (for example, compilation and linking) to evaluate the

consistency and completeness among artifact sets
 Assessment of component source or executable files against relevant evaluation criteria through

inspection, analysis, demonstration, or testing
 Execution of stand-alone component test cases that automatically compare expected results with

actual results
 Analysis of changes between the current version of the implementation set and previous versions

(scrap, rework, and defect elimination trends)
 Subjective review of other dimensions of quality

 31

Deployment Set
The deployment set includes user deliverables and machine language notations, executable software, and the

build scripts, installation scripts, and executable target specific data necessary to use the product in its target

environment.
Deployment sets are evaluated, assessed, and measured through a combination of the following:

 Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate
the consistency and completeness and the~ semantic balance between information in the two sets

 Testing the partitioning, replication, and allocation strategies in mapping components of the
implementation set to physical resources of the deployment system (platform type, number, network
topology)

 Testing against the defined usage scenarios in the user manual such as installation, user-oriented
dynamic reconfiguration, mainstream usage, and anomaly management

 Analysis of changes between the current version of the deployment set and previous versions (defect
elimination trends, performance changes)

 Subjective review of other dimensions of quality
Each artifact set is the predominant development focus of one phase of the life cycle; the other sets take on
check and balance roles. As illustrated in Figure 6-2, each phase has a predominant focus: Requirements are the
focus of the inception phase; design, the elaboration phase; implementation, the construction phase; and deploy-
ment, the transition phase. The management artifacts also evolve, but at a fairly constant level across the life
cycle.

Most of today's software development tools map closely to one of the five artifact sets.
1. Management: scheduling, workflow, defect tracking, change management,

documentation, spreadsheet, resource management, and presentation tools
2. Requirements: requirements management tools

3. Design: visual modeling tools
4. Implementation: compiler/debugger tools, code analysis tools, test coverage analysis tools, and test

management tools
5. Deployment: test coverage and test automation tools, network management tools, commercial components

(operating systems, GUIs, RDBMS, networks, middleware), and installation tools.

 32

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set (executable code) is important
because there are very different concerns with each set. The structure of the information delivered to the user
(and typically the test organization) is very different from the structure of the source code information.
Engineering decisions that have an impact on the quality of the deployment set but are relatively
incomprehensible in the design and implementation sets include the following:

 Dynamically reconfigurable parameters (buffer sizes, color palettes, number of servers, number of
simultaneous clients, data files, run-time parameters)

 Effects of compiler/link optimizations (such as space optimization versus speed optimization)

 Performance under certain allocation strategies (centralized versus distributed, primary and shadow
threads, dynamic load balancing, hot backup versus checkpoint/rollback)

 Virtual machine constraints (file descriptors, garbage collection, heap size, maximum record size,
disk file rotations)

 Process-level concurrency issues (deadlock and race conditions)

 Platform-specific differences in performance or behavior

6.1.3 ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system description. Early in
the life cycle, precision is low and the representation is generally high. Eventually, the precision of
representation is high and everything is specified in full detail. Each phase of development focuses on a
particular artifact set. At the end of each phase, the overall system state will have progressed on all sets, as
illustrated in Figure 6-3.

The inception phase focuses mainly on critical requirements usually with a secondary focus on an initial
deployment view. During the elaboration phase, there is much greater depth in requirements, much more
breadth in the design set, and further work on implementation and deployment issues. The main focus of the
construction phase is design and implementation. The main focus of the transition phase is on achieving
consistency and completeness of the deployment set in the context of the other sets.

 33

6.1.4 TEST ARTIFACTS
 The test artifacts must be developed concurrently with the product from inception through

deployment. Thus, testing is a full-life-cycle activity, not a late life-cycle activity.

 The test artifacts are communicated, engineered, and developed within the same artifact sets as the
developed product.

 The test artifacts are implemented in programmable and repeatable formats (as software programs).

 The test artifacts are documented in the same way that the product is documented.
 Developers of the test artifacts use the same tools, techniques, and training as the software engineers

developing the product.
Test artifact subsets are highly project-specific, the following example clarifies the relationship between test
artifacts and the other artifact sets. Consider a project to perform seismic data processing for the purpose of oil
exploration. This system has three fundamental subsystems: (1) a sensor subsystem that captures raw seismic
data in real time and delivers these data to (2) a technical operations subsystem that converts raw data into an
organized database and manages queries to this database from (3) a display subsystem that allows workstation
operators to examine seismic data in human-readable form. Such a system would result in the following test
artifacts:

 Management set. The release specifications and release descriptions capture the objectives,
evaluation criteria, and results of an intermediate milestone. These artifacts are the test plans and test
results negotiated among internal project teams. The software change orders capture test results
(defects, testability changes, requirements ambiguities, enhancements) and the closure criteria
associated with making a discrete change to a baseline.

 Requirements set. The system-level use cases capture the operational concept for the system and the
acceptance test case descriptions, including the expected behavior of the system and its quality
attributes. The entire requirement set is a test artifact because it is the basis of all assessment
activities across the life cycle.

 Design set. A test model for nondeliverable components needed to test the product baselines is
captured in the design set. These components include such design set artifacts as a seismic event
simulation for creating realistic sensor data; a "virtual operator" that can support unattended, after-
hours test cases; specific instrumentation suites for early demonstration of resource usage; transaction
rates or response times; and use case test drivers and component stand-alone test drivers.

 Implementation set. Self-documenting source code representations for test components and test
drivers provide the equivalent of test procedures and test scripts. These source files may also include
human-readable data files representing certain statically defined data sets that are explicit test source
files. Output files from test drivers provide the equivalent of test reports.

 Deployment set. Executable versions of test components, test drivers, and data files are provided.

6.2 MANAGEMENT ARTIFACTS
The management set includes several artifacts that capture intermediate results and ancillary information
necessary to document the product/process legacy, maintain the product, improve the product, and
improve the process.

Business Case
The business case artifact provides all the information necessary to determine whether the project is worth
investing in. It details the expected revenue, expected cost, technical and management plans, and backup
data necessary to demonstrate the risks and realism of the plans. The main purpose is to transform the
vision into economic terms so that an organization can make an accurate ROI assessment. The financial
forecasts are evolutionary, updated with more accurate forecasts as the life cycle progresses. Figure 6-4

 34

provides a default outline for a business case.

Software Development Plan
The software development plan (SDP) elaborates the process framework into a fully detailed plan. Two
indications of a useful SDP are periodic updating (it is not stagnant shelfware) and understanding and
acceptance by managers and practitioners alike. Figure 6-5 provides a default outline for a software
development plan.

 35

Work Breakdown Structure
Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs. To monitor and control a
project's financial performance, the software project man1ger must have insight into project costs and how they
are expended. The structure of cost accountability is a serious project planning constraint.

Software Change Order Database
 Managing change is one of the fundamental primitives of an iterative development process. With greater
change freedom, a project can iterate more productively. This flexibility increases the content, quality, and
number of iterations that a project can achieve within a given schedule. Change freedom has been achieved in
practice through automation, and today's iterative development environments carry the burden of change
management. Organizational processes that depend on manual change management techniques have
encountered major inefficiencies.

Release Specifications
The scope, plan, and objective evaluation criteria for each baseline release are derived from the vision statement
as well as many other sources (make/buy analyses, risk management concerns, architectural considerations,
shots in the dark, implementation constraints, quality thresholds). These artifacts are intended to evolve along
with the process, achieving greater fidelity as the life cycle progresses and requirements understanding matures.
Figure 6-6 provides a default outline for a release specification

Release Descriptions

Release description documents describe the results of each release, including performance against each of the
evaluation criteria in the corresponding release specification. Release baselines should be accompanied by a
release description document that describes the evaluation criteria for that configuration baseline and provides
substantiation (through demonstration, testing, inspection, or analysis) that each criterion has been addressed in
an acceptable manner. Figure 6-7 provides a default outline for a release description.

Status Assessments
Status assessments provide periodic snapshots of project health and status, including the software project
manager's risk assessment, quality indicators, and management indicators. Typical status assessments should
include a review of resources, personnel staffing, financial data (cost and revenue), top 10 risks, technical
progress (metrics snapshots), major milestone plans and results, total project or product scope & action items

 36

Environment
An important emphasis of a modern approach is to define the development and maintenance environment as a
first-class artifact of the process. A robust, integrated development environment must support automation of the
development process. This environment should include requirements management, visual modeling, document
automation, host and target programming tools, automated regression testing, and continuous and integrated
change management, and feature and defect tracking.

Deployment
A deployment document can take many forms. Depending on the project, it could include several document
subsets for transitioning the product into operational status. In big contractual efforts in which the system is
delivered to a separate maintenance organization, deployment artifacts may include computer system operations
manuals, software installation manuals, plans and procedures for cutover (from a legacy system), site surveys,
and so forth. For commercial software products, deployment artifacts may include marketing plans, sales rollout
kits, and training courses.

Management Artifact Sequences
In each phase of the life cycle, new artifacts are produced and previously developed artifacts are updated to
incorporate lessons learned and to capture further depth and breadth of the solution. Figure 6-8 identifies a
typical sequence of artifacts across the life-cycle phases.

 37

 38

6.3 ENGINEERING ARTIFACTS
Most of the engineering artifacts are captured in rigorous engineering notations such as UML, programming
languages, or executable machine codes. Three engineering artifacts are explicitly intended for more general
review, and they deserve further elaboration.

Vision Document

The vision document provides a complete vision for the software system under development and. supports the
contract between the funding authority and the development organization. A project vision is meant to be
changeable as understanding evolves of the requirements, architecture, plans, and technology. A good vision
document should change slowly. Figure 6-9 provides a default outline for a vision document.

Architecture Description

The architecture description provides an organized view of the software architecture under development. It is
extracted largely from the design model and includes views of the design, implementation, and deployment sets
sufficient to understand how the operational concept of the requirements set will be achieved. The breadth of
the architecture description will vary from project to project depending on many factors. Figure 6-10 provides a
default outline for an architecture description.

 39

Software User Manual
The software user manual provides the user with the reference documentation necessary to support the delivered
software. Although content is highly variable across application domains, the user manual should include
installation procedures, usage procedures and guidance, operational constraints, and a user interface description,
at a minimum. For software products with a user interface, this manual should be developed early in the life
cycle because it is a necessary mechanism for communicating and stabilizing an important subset of
requirements. The user manual should be written by members of the test team, who are more likely to
understand the user's perspective than the development team.

6.4 PRAGMATIC ARTIFACTS

People want to review information but don't understand the language of the artifact. Many interested

reviewers of a particular artifact will resist having to learn the engineering language in which the artifact is

written. It is not uncommon to find people (such as veteran software managers, veteran quality assurance

specialists, or an auditing authority from a regulatory agency) who react as follows: "I'm not going to learn

UML, but I want to review the design of this software, so give me a separate description such as some

flowcharts and text that I can understand."

People want to review the information but don't have access to the tools. It is not very common for the

development organization to be fully tooled; it is extremely rare that the/other stakeholders have any capability

to review the engineering artifacts on-line. Consequently, organizations are forced to exchange paper

documents. Standardized formats (such as UML, spreadsheets, Visual Basic, C++, and Ada 95), visualization

tools, and the Web are rapidly making it economically feasible for all stakeholders to exchange information

electronically.
Human-readable engineering artifacts should use rigorous notations that are complete, consistent, and
used in a self-documenting manner. Properly spelled English words should be used for all identifiers and
descriptions. Acronyms and abbreviations should be used only where they are well accepted jargon in the
context of the component's usage. Readability should be emphasized and the use of proper English words
should be required in all engineering artifacts. This practice enables understandable representations, browse
able formats (paperless review), more-rigorous notations, and reduced error rates.

Useful documentation is self-defining: It is documentation that gets used.

Paper is tangible; electronic artifacts are too easy to change. On-line and Web-based artifacts can be

changed easily and are viewed with more skepticism because of their inherent volatility.

Unit – III Important questions

1. Explain briefly two stages of the life cycle engineering and production.
2. Explain different phases of the life cycle process?

3. Explain the goal of Inception phase, Elaboration phase, Construction phase and
Transition phase.

4. Explain the overview of the artifact set

5. Write a short note on
(a) Management Artifacts (b) Engineering Artifacts (c) Pragmatic Artifacts

 40

7.Model based software architecture

 7.1 ARCHITECTURE: A MANAGEMENT PERSPECTIVE

The most critical technical product of a software project is its architecture: the infrastructure, control, and data
interfaces that permit software components to cooperate as a system and software designers to cooperate
efficiently as a team. When the communications media include multiple languages and intergroup literacy
varies, the communications problem can become extremely complex and even unsolvable. If a software
development team is to be successful, the inter project communications, as captured in the software
architecture, must be both accurate and precise

From a management perspective, there are three different aspects of architecture.
1. An architecture (the intangible design concept) is the design of a software system this includes all

engineering necessary to specify a complete bill of materials.

2. An architecture baseline (the tangible artifacts) is a slice of information across the engineering
artifact sets sufficient to satisfy all stakeholders that the vision (function and quality) can be
achieved within the parameters of the business case (cost, profit, time, technology, and people).

3. An architecture description (a human-readable representation of an architecture, which is one of the
components of an architecture baseline) is an organized subset of information extracted from the
design set model(s). The architecture description communicates how the intangible concept is
realized in the tangible artifacts.

The number of views and the level of detail in each view can vary widely.
The importance of software architecture and its close linkage with modern software development processes can
be summarized as follows:

 Achieving a stable software architecture represents a significant project milestone at which the
critical make/buy decisions should have been resolved.

 Architecture representations provide a basis for balancing the trade-offs between the problem space
(requirements and constraints) and the solution space (the operational product).

 The architecture and process encapsulate many of the important (high-payoff or high-risk)
communications among individuals, teams, organizations, and stakeholders.

 Poor architectures and immature processes are often given as reasons for project failures.

 A mature process, an understanding of the primary requirements, and a demonstrable architecture are
important prerequisites for predictable planning.

 Architecture development and process definition are the intellectual steps that map the problem to a
solution without violating the constraints; they require human innovation and cannot be automated.

 7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE
An architecture framework is defined in terms of views that are abstractions of the UML models in the design
set. The design model includes the full breadth and depth of information. An architecture view is an abstraction
of the design model; it contains only the architecturally significant information. Most real-world systems
require four views: design, process, component, and deployment. The purposes of these views are as follows:

 Design: describes architecturally significant structures and functions of the design model

 Process: describes concurrency and control thread relationships among the design, component, and
deployment views

 Component: describes the structure of the implementation set

 Deployment: describes the structure of the deployment set
Figure 7-1 summarizes the artifacts of the design set, including the architecture views and architecture
description.

 41

The requirements model addresses the behavior of the system as seen by its end users, analysts, and testers.
This view is modeled statically using use case and class diagrams, and dynamically using sequence,
collaboration, state chart, and activity diagrams.

 The use case view describes how the system's critical (architecturally significant) use cases are
realized by elements of the design model. It is modeled statically using use case diagrams, and
dynamically using any of the UML behavioral diagrams.

 The design view describes the architecturally significant elements of the design model. This view, an
abstraction of the design model, addresses the basic structure and functionality of the solution. It is
modeled statically using class and object diagrams, and dynamically using any of the UML
behavioral diagrams.

 The process view addresses the run-time collaboration issues involved in executing the architecture
on a distributed deployment model, including the logical software network topology (allocation to
processes and threads of control), interprocess communication, and state management. This view is
modeled statically using deployment diagrams, and dynamically using any of the UML behavioral
diagrams.

 The component view describes the architecturally significant elements of the implementation set.
This view, an abstraction of the design model, addresses the software source code realization of the
system from the perspective of the project's integrators and developers, especially with regard to
releases and configuration management. It is modeled statically using component diagrams, and
dynamically using any of the UML behavioral diagrams.

 The deployment view addresses the executable realization of the system, including the allocation of
logical processes in the distribution view (the logical software topology) to physical resources of the
deployment network (the physical system topology). It is modeled statically using deployment dia-
grams, and dynamically using any of the UML behavioral diagrams.

Generally, an architecture baseline should include the following:
 Requirements: critical use cases, system-level quality objectives, and priority relationships among

features and qualities

 Design: names, attributes, structures, behaviors, groupings, and relationships of significant classes
and components

 Implementation: source component inventory and bill of materials (number, name, purpose, cost) of
all primitive components

 Deployment: executable components sufficient to demonstrate the critical use cases and the risk
associated with achieving the system qualities

 42

 43

UNIT - IV

Work Flows of the process: Software process workflows, Iteration workflows.
Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments.
Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating,
Iteration planning process, Pragmatic planning

Workflow of the process

 SOFTWARE PROCESS WORKFLOWS
The term WORKFLOWS is used to mean a thread of cohesive and mostly sequential activities. Workflows are
mapped to product artifacts There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all stakeholders

2. Environment workflow: automating the process and evolving the maintenance environment

3. Requirements workflow: analyzing the problem space and evolving the requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and design artifacts

5. Implementation workflow: programming the components and evolving the implementation and
deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user
Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the top-level workflows.

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in each of the life-cycle phases of
inception, elaboration, construction, and transition.

 44

 45

 ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on where the
iteration is located in the development cycle. Each iteration is defined in terms of a set of allocated usage
scenarios. An individual iteration's workflow, illustrated in Figure 8-2, generally includes the following
sequence:

 Management: iteration planning to determine the content of the release and develop the detailed plan
for the iteration; assignment of work packages, or tasks, to the development team

 Environment: evolving the software change order database to reflect all new baselines and changes to
existing baselines for all product, test, and environment components

 Requirements: analyzing the baseline plan, the baseline architecture, and the baseline requirements

set artifacts to fully elaborate the use cases to be demonstrated at the end of this iteration and their
evaluation criteria; updating any requirements set artifacts to reflect changes necessitated by results
of this iteration's engineering activities

 Design: evolving the baseline architecture and the baseline design set artifacts to elaborate fully the
design model and test model components necessary to demonstrate against the evaluation criteria
allocated to this iteration; updating design set artifacts to reflect changes necessitated by the results
of this iteration's engineering activities

 46

 Implementation: developing or acquiring any new components, and enhancing or modifying any
existing components, to demonstrate the evaluation criteria allocated to this iteration; integrating and
testing all new and modified components with existing baselines (previous versions)

 Assessment: evaluating the results of the iteration, including compliance with the allocated
evaluation criteria and the quality of the current baselines; identifying any rework required and
determining whether it should be performed before deployment of this release or allocated to the
next release; assessing results to improve the basis of the subsequent iteration's plan

 Deployment: transitioning the release either to an external organization (such as a user, independent
verification and validation contractor, or regulatory agency) or to internal closure by conducting a
post-mortem so that lessons learned can be captured and reflected in the next iteration

Iterations in the inception and elaboration phases focus on management. Requirements, and design activities.
Iterations in the construction phase focus on design, implementation, and assessment. Iterations in the
transition phase focus on assessment and deployment. Figure 8-3 shows the emphasis on different activities
across the life cycle. An iteration represents the state of the overall architecture and the complete deliverable
system. An increment represents the current progress that will be combined with the preceding iteration to
from the next iteration. Figure 8-4, an example of a simple development life cycle, illustrates the differences
between iterations and increments.

 47

 48

9. Checkpoints of the process

Three types of joint management reviews are conducted throughout the process:

1. Major milestones. These system wide events are held at the end of each development phase. They
provide visibility to system wide issues, synchronize the management and engineering perspectives,
and verify that the aims of the phase have been achieved.

2. Minor milestones. These iteration-focused events are conducted to review the content of an iteration
in detail and to authorize continued work.

3. Status assessments. These periodic events provide management with frequent and regular insight
into the progress being made.

Each of the four phases-inception, elaboration, construction, and transition consists of one or more iterations
and concludes with a major milestone when a planned technical capability is produced in demonstrable form.
An iteration represents a cycle of activities for which there is a well-defined intermediate result-a minor
milestone-captured with two artifacts: a release specification (the evaluation criteria and plan) and a release
description (the results). Major milestones at the end of each phase use formal, stakeholder-approved evaluation
criteria and release descriptions; minor milestones use informal, development-team-controlled versions of these
artifacts.
Figure 9-1 illustrates a typical sequence of project checkpoints for a relatively large project.

 49

9.1 MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can be used in many
different process models, including the conventional waterfall model. In an iterative model, the major
milestones are used to achieve concurrence among all stakeholders on the current state of the project. Different
stakeholders have very different concerns:

 Customers: schedule and budget estimates, feasibility, risk assessment, requirements understanding,
progress, product line compatibility

 Users: consistency with requirements and usage scenarios, potential for accommodating growth,
quality attributes

 Architects and systems engineers: product line compatibility, requirements changes, trade-off
analyses, completeness and consistency, balance among risk, quality, and usability

 Developers: sufficiency of requirements detail and usage scenario descriptions, . frameworks for
component selection or development, resolution of development risk, product line compatibility,
sufficiency of the development environment

 Maintainers: sufficiency of product and documentation artifacts, understandability, interoperability
with existing systems, sufficiency of maintenance environment

 Others: possibly many other perspectives by stakeholders such as regulatory agencies, independent
verification and validation contractors, venture capital investors, subcontractors, associate contractors,
and sales and marketing teams

Table 9-1 summarizes the balance of information across the major milestones.

 50

Life-Cycle Objectives Milestone
The life-cycle objectives milestone occurs at the end of the inception phase. The goal is to present to all
stakeholders a recommendation on how to proceed with development, including a plan, estimated cost and
schedule, and expected benefits and cost savings. A successfully completed life-cycle objectives milestone will
result in authorization from all stakeholders to proceed with the elaboration phase.

Life-Cycle Architecture Milestone
The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary goal is to
demonstrate an executable architecture to all stakeholders. The baseline architecture consists of both a human-
readable representation (the architecture document) and a configuration-controlled set of software components
captured in the engineering artifacts. A successfully completed life-cycle architecture milestone will result in
authorization from the stakeholders to proceed with the construction phase.

The technical data listed in Figure 9-2 should have been reviewed by the time of the lifecycle architecture
milestone. Figure 9-3 provides default agendas for this milestone.

 51

Initial Operational Capability Milestone
The initial operational capability milestone occurs late in the construction phase. The goals are to assess the
readiness of the software to begin the transition into customer/user sites and to authorize the start of acceptance
testing. Acceptance testing can be done incrementally across multiple iterations or can be completed entirely
during the transition phase is not necessarily the completion of the construction phase.
Product Release Milestone
The product release milestone occurs at the end of the transition phase. The goal is to assess the completion of
the software and its transition to the support organization, if any. The results of acceptance testing are
reviewed, and all open issues are addressed. Software quality metrics are reviewed to determine whether
quality is sufficient for transition to the support organization.

9.2 MINOR MILESTONES
For most iterations, which have a one-month to six-month duration, only two minor milestones are needed: the
iteration readiness review and the iteration assessment review.

 Iteration Readiness Review. This informal milestone is conducted at the start of each iteration to
review the detailed iteration plan and the evaluation criteria that have been allocated to this iteration.

 Iteration Assessment Review. This informal milestone is conducted at the end of each iteration to
assess the degree to which the iteration achieved its objectives and satisfied its evaluation criteria, to
review iteration results, to review qualification test results (if part of the iteration), to determine the
amount of rework to be done, and to review the impact of the iteration results on the plan for
subsequent iterations.

The format and content of these minor milestones tend to be highly dependent on the project and the
organizational culture. Figure 9-4 identifies the various minor milestones to be considered when a project is
being planned.

 52

9.3 PERIODIC STATUS ASSESSMENTS
 Periodic status assessments are management reviews conducted at regular intervals (monthly, quarterly) to
address progress and quality indicators, ensure continuous attention to project dynamics, and maintain open
communications among all stakeholders.
Periodic status assessments serve as project snapshots. While the period may vary, the recurring event forces
the project history to be captured and documented. Status assessments provide the following:
 A mechanism for openly addressing, communicating, and resolving management issues, technical

issues, and project risks

 Objective data derived directly from on-going activities and evolving product configurations

 A mechanism for disseminating process, progress, quality trends, practices, and experience
information to and from all stakeholders in an open forum
Periodic status assessments are crucial for focusing continuous attention on the evolving health of the

project and its dynamic priorities. They force the software project manager to collect and review the data
periodically, force outside peer review, and encourage dissemination of best practices to and from other
stakeholders.

The default content of periodic status assessments should include the topics identified in Table 9-2.

10. Iterative process planning

A good work breakdown structure and its synchronization with the process framework are critical factors in
software project success. Development of a work breakdown structure dependent on the project management
style, organizational culture, customer preference, financial constraints, and several other hard-to-define,
project-specific parameters.
A WBS is simply a hierarchy of elements that decomposes the project plan into the discrete work tasks. A
WBS provides the following information structure:

 53

 A delineation of all significant work

 A clear task decomposition for assignment of responsibilities

 A framework for scheduling, budgeting, and expenditure tracking

Many parameters can drive the decomposition of work into discrete tasks: product subsystems, components,

functions, organizational units, life-cycle phases, even geographies. Most systems have a first-level

decomposition by subsystem. Subsystems are then decomposed into their components, one of which is typically

the software.

10.1.1 CONVENTIONAL WBS ISSUES

Conventional work breakdown structures frequently suffer from three fundamental flaws.

1. They are prematurely structured around the product design.

2. They are prematurely decomposed, planned, and budgeted in either too much or too little detail.

3. They are project-specific, and cross-project comparisons are usually difficult or impossible.

Conventional work breakdown structures are prematurely structured around the product design. Figure 10-1
shows a typical conventional WBS that has been structured primarily around the subsystems of its product
architecture, then further decomposed into the components of each subsystem. A WBS is the architecture for
the financial plan.

Conventional work breakdown structures are prematurely decomposed, planned, and budgeted in either too
little or too much detail. Large software projects tend to be over planned and small projects tend to be under
planned. The basic problem with planning too much detail at the outset is that the detail does not evolve with
the level of fidelity in the plan.

Conventional work breakdown structures are project-specific, and cross-project comparisons are usually
difficult or impossible. With no standard WBS structure, it is extremely difficult to compare plans, financial
data, schedule data, organizational efficiencies, cost trends, productivity trends, or quality trends across
multiple projects.

Figure 10-1 Conventional work breakdown structure, following the product hierarchy
Management
System requirement and design
Subsystem 1
Component 11
Requirements
Design
Code
Test
Documentation
…(similar structures for other components)
Component 1N
Requirements
Design
Code
Test
Documentation
…(similar structures for other subsystems)
Subsystem M
Component M1

 54

Requirements
Design
Code
Test
Documentation
…(similar structures for other components)
Component MN
Requirements
Design
Code
Test
Documentation
Integration and test
Test planning
Test procedure preparation
Testing
Test reports
Other support areas
Configuration control
Quality assurance
System administration

10.1.2 EVOLUTIONARY WORK BREAKDOWN STRUCTURES
An evolutionary WBS should organize the planning elements around the process framework rather than the
product framework. The basic recommendation for the WBS is to organize the hierarchy as follows:

 First-level WBS elements are the workflows (management, environment, requirements, design,
implementation, assessment, and deployment).

 Second-level elements are defined for each phase of the life cycle (inception, elaboration,
construction, and transition).

 Third-level elements are defined for the focus of activities that produce the artifacts of each phase.

A default WBS consistent with the process framework (phases, workflows, and artifacts) is shown in
Figure 10-2. This recommended structure provides one example of how the elements of the process
framework can be integrated into a plan. It provides a framework for estimating the costs and schedules of
each element, allocating them across a project organization, and tracking expenditures.

The structure shown is intended to be merely a starting point. It needs to be tailored to the specifics of a
project in many ways.

 Scale. Larger projects will have more levels and substructures.

 Organizational structure. Projects that include subcontractors or span multiple organizational entities
may introduce constraints that necessitate different WBS allocations.

 Degree of custom development. Depending on the character of the project, there can be very different
emphases in the requirements, design, and implementation workflows.

 Business context. Projects developing commercial products for delivery to a broad customer base
may require much more elaborate substructures for the deployment element.

 Precedent experience. Very few projects start with a clean slate. Most of them are developed as new
generations of a legacy system (with a mature WBS) or in the context of existing organizational
standards (with preordained WBS expectations).

The WBS decomposes the character of the project and maps it to the life cycle, the budget, and the

 55

personnel. Reviewing a WBS provides insight into the important attributes, priorities, and structure of the
project plan.
Another important attribute of a good WBS is that the planning fidelity inherent in each element is
commensurate with the current life-cycle phase and project state. Figure 10-3 illustrates this idea. One of the
primary reasons for organizing the default WBS the way I have is to allow for planning elements that range
from planning packages (rough budgets that are maintained as an estimate for future elaboration rather than
being decomposed into detail) through fully planned activity networks (with a well-defined budget and
continuous assessment of actual versus planned expenditures).

Figure 10-2 Default work breakdown structure
A Management
 AA Inception phase management
 AAA Business case development
 AAB Elaboration phase release specifications
 AAC Elaboration phase WBS specifications
 AAD Software development plan
 AAE Inception phase project control and status assessments
 AB Elaboration phase management
 ABA Construction phase release specifications
 ABB Construction phase WBS baselining
 ABC Elaboration phase project control and status assessments
 AC Construction phase management
 ACA Deployment phase planning
 ACB Deployment phase WBS baselining
 ACC Construction phase project control and status assessments
 AD Transition phase management
 ADA Next generation planning
 ADB Transition phase project control and status assessments
B Environment
 BA Inception phase environment specification
 BB Elaboration phase environment baselining
 BBA Development environment installation and administration
 BBB Development environment integration and custom toolsmithing
 BBC SCO database formulation
 BC Construction phase environment maintenance
 BCA Development environment installation and administration
 BCB SCO database maintenance
 BD Transition phase environment maintenance
 BDA Development environment maintenance and administration
 BDB SCO database maintenance
 BDC Maintenance environment packaging and transition
C Requirements
 CA Inception phase requirements development
 CCA Vision specification
 CAB Use case modeling

 56

 CB Elaboration phase requirements baselining
 CBA Vision baselining
 CBB Use case model baselining
 CC Construction phase requirements maintenance
 CD Transition phase requirements maintenance
D Design
 DA Inception phase architecture prototyping
 DB Elaboration phase architecture baselining
 DBA Architecture design modeling
 DBB Design demonstration planning and conduct
 DBC Software architecture description
 DC Construction phase design modeling
 DCA Architecture design model maintenance
 DCB Component design modeling
 DD Transition phase design maintenance
E Implementation
 EA Inception phase component prototyping
 EB Elaboration phase component implementation
 EBA Critical component coding demonstration integration
 EC Construction phase component implementation
 ECA Initial release(s) component coding and stand-alone testing
 ECB Alpha release component coding and stand-alone testing
 ECC Beta release component coding and stand-alone testing
 ECD Component maintenance
F Assessment
 FA Inception phase assessment
 FB Elaboration phase assessment
 FBA Test modeling
 FBB Architecture test scenario implementation
 FBC Demonstration assessment and release descriptions
 FC Construction phase assessment
 FCA Initial release assessment and release description
 FCB Alpha release assessment and release description
 FCC Beta release assessment and release description
 FD Transition phase assessment
 FDA Product release assessment and release description
G Deployment
 GA Inception phase deployment planning
 GB Elaboration phase deployment planning
 GC Construction phase deployment
 GCA User manual baselining
 GD Transition phase deployment
 GDA Product transition to user

 57

Figure 10-3 Evolution of planning fidelity in the WBS over the life cycle

 Inception Elaboration

WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment Moderate Environment High
Requirement High Requirement High
Design Moderate Design High
Implementation Low Implementation Moderate
Assessment Low Assessment Moderate
Deployment Low Deployment Low

WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment High Environment High
Requirements Low Requirements Low
Design Low Design Moderate
Implementation Moderate Implementation High
Assessment High Assessment High
Deployment High Deployment Moderate

 Transition Construction

10.2 PLANNING GUIDELINES
Software projects span a broad range of application domains. It is valuable but risky to make specific planning
recommendations independent of project context. Project-independent planning advice is also risky. There is the
risk that the guidelines may pe adopted blindly without being adapted to specific project circumstances. Two
simple planning guidelines should be considered when a project plan is being initiated or assessed. The first
guideline, detailed in Table 10-1, prescribes a default allocation of costs among the first-level WBS elements.
The second guideline, detailed in Table 10-2, prescribes the allocation of effort and schedule across the lifecycle
phases.

 58

10-1 Web budgeting defaults
First Level WBS Element Default Budget
Management 10%
Environment 10%
Requirement 10%
Design 15%
Implementation 25%
Assessment 25%
Deployment 5%
Total 100%

Table 10-2 Default distributions of effort and schedule by phase
Domain Inception Elaboration Construction Transition
Effort 5% 20% 65% 10%
Schedule 10% 30% 50% 10%

10.3 THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives. The first is a forward-looking, top-down approach. It
starts with an understanding of the general requirements and constraints, derives a macro-level budget and
schedule, then decomposes these elements into lower level budgets and intermediate milestones. From this
perspective, the following planning sequence would occur:

1. The software project manager (and others) develops a characterization of the overall size, process,
environment, people, and quality required for the project.

2. A macro-level estimate of the total effort and schedule is developed using a software cost estimation
model.

3. The software project manager partitions the estimate for the effort into a top-level WBS using
guidelines such as those in Table 10-1.

4. At this point, subproject managers are given the responsibility for decomposing each of the WBS
elements into lower levels using their top-level allocation, staffing profile, and major milestone dates
as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in mind, analyze the
micro-level budgets and schedules, then sum all these elements into the higher level budgets and intermediate
milestones. This approach tends to define and populate the WBS from the lowest levels upward. From this per-
spective, the following planning sequence would occur:

1. The lowest level WBS elements are elaborated into detailed tasks

2. Estimates are combined and integrated into higher level budgets and milestones.

3. Comparisons are made with the top-down budgets and schedule milestones.
Milestone scheduling or budget allocation through top-down estimating tends to exaggerate the project
management biases and usually results in an overly optimistic plan. Bottom-up estimates usually exaggerate the
performer biases and result in an overly pessimistic plan.

These two planning approaches should be used together, in balance, throughout the life cycle of the
project. During the engineering stage, the top-down perspective will dominate because there is usually not
enough depth of understanding nor stability in the detailed task sequences to perform credible bottom-up
planning. During the production stage, there should be enough precedent experience and planning fidelity that
the bottom-up planning perspective will dominate. Top-down approach should be well tuned to the project-

 59

specific parameters, so it should be used more as a global assessment technique. Figure 10-4 illustrates this life-
cycle planning balance.

Figure 10-4 Planning balance throughout the life cycle

Bottom up task level planning based on metrics from
previous iterations

Top down project level planning based on microanalysis

from previous projects

Engineering Stage Production Stage
Inception Elaboration Construction Transition

 Feasibility iteration Architecture iteration Usable iteration Product
 Releases

Engineering stage planning
emphasis

Production stage planning
emphasis

Macro level task estimation for
production stage artifacts

Micro level task estimation for
production stage artifacts

Micro level task estimation for
engineering artifacts

Macro level task estimation for
maintenance of engineering artifacts

Stakeholder concurrence Stakeholder concurrence
Coarse grained variance analysis of
actual vs planned expenditures

Fine grained variance analysis of actual
vs planned expenditures

Tuning the top down project
independent planning guidelines into
project specific planning guidelines

WBS definition and elaboration

 10.4 THE ITERATION PLANNING PROCESS
Planning is concerned with defining the actual sequence of intermediate results. An evolutionary build plan is
important because there are always adjustments in build content and schedule as early conjecture evolves into
well-understood project circumstances. Iteration is used to mean a complete synchronization across the project,
with a well-orchestrated global assessment of the entire project baseline.
 Inception iterations. The early prototyping activities integrate the foundation components of a

candidate architecture and provide an executable framework for elaborating the critical use cases of
the system. This framework includes existing components, commercial components, and custom
prototypes sufficient to demonstrate a candidate architecture and sufficient requirements
understanding to establish a credible business case, vision, and software development plan.

 Elaboration iterations. These iterations result in architecture, including a complete framework and
infrastructure for execution. Upon completion of the architecture iteration, a few critical use cases should

 60

be demonstrable: (1) initializing the architecture, (2) injecting a scenario to drive the worst-case data
processing flow through the system (for example, the peak transaction throughput or peak load scenario),
and (3) injecting a scenario to drive the worst-case control flow through the system (for example,
orchestrating the fault-tolerance use cases).

 Construction iterations. Most projects require at least two major construction iterations: an alpha release
and a beta release.

 Transition iterations. Most projects use a single iteration to transition a beta release into the final product.
The general guideline is that most projects will use between four and nine iterations. The typical project would
have the following six-iteration profile:

 One iteration in inception: an architecture prototype

 Two iterations in elaboration: architecture prototype and architecture baseline

 Two iterations in construction: alpha and beta releases

 One iteration in transition: product release
 A very large or unprecedented project with many stakeholders may require additional inception iteration and
two additional iterations in construction, for a total of nine iterations.

10.5 PRAGMATIC PLANNING
Even though good planning is more dynamic in an iterative process, doing it accurately is far easier. While
executing iteration N of any phase, the software project manager must be monitoring and controlling against a
plan that was initiated in iteration N - 1 and must be planning iteration N + 1. The art of good project·
management is to make trade-offs in the current iteration plan and the next iteration plan based on objective
results in the current iteration and previous iterations. Aside from bad architectures and misunderstood
requirements, inadequate planning (and subsequent bad management) is one of the most common reasons for
project failures. Conversely, the success of every successful project can be attributed in part to good planning.
A project's plan is a definition of how the project requirements will be transformed into' a product within the
business constraints. It must be realistic, it must be current, it must be a team product, it must be understood by
the stakeholders, and it must be used. Plans are not just for managers. The more open and visible the planning
process and results, the more ownership there is among the team members who need to execute it. Bad, closely
held plans cause attrition. Good, open plans can shape cultures and encourage teamwork.

Unit – Important Questions

1. Define Model-Based software architecture?
2. Explain various process workflows?
3. Define typical sequence of life cycle checkpoints?
4. Explain general status of plans, requirements and product across the major milestones.

 5. Explain conventional and Evolutionary work break down structures?
 6. Explain briefly planning balance throughout the life cycle?

 61

UNIT - V

Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution
of Organizations.
Process Automation: Automation Building blocks, The Project Environment.

Project Organizations and Responsibilities:

 Organizations engaged in software Line-of-Business need to support projects with the infrastructure

necessary to use a common process.
 Project organizations need to allocate artifacts & responsibilities across project team to ensure a

balance of global (architecture) & local (component) concerns.
 The organization must evolve with the WBS & Life cycle concerns.
 Software lines of business & product teams have different motivation.
 Software lines of business are motivated by return of investment (ROI), new business discriminators,

market diversification & profitability.
 Project teams are motivated by the cost, Schedule & quality of specific deliverables

1) Line-Of-Business Organizations:
 The main features of default organization are as follows:

• Responsibility for process definition & maintenance is specific to a cohesive line of business.
• Responsibility for process automation is an organizational role & is equal in importance to the

process definition role.
• Organizational role may be fulfilled by a single individual or several different teams.

Fig: Default roles in a software Line-of-Business Organization.

 62

Software Engineering Process Authority (SEPA)
 The SEPA facilities the exchange of information & process guidance both to & from project
practitioners

This role is accountable to General Manager for maintaining a current assessment of the
organization’s process maturity & its plan for future improvement
 Project Review Authority (PRA)
 The PRA is the single individual responsible for ensuring that a software project complies with
all organizational & business unit software policies, practices & standards

A software Project Manager is responsible for meeting the requirements of a contract or some other
project compliance standard

Software Engineering Environment Authority(SEEA)
 The SEEA is responsible for automating the organization’s process, maintaining the organization’s
standard environment, Training projects to use the environment & maintaining organization-wide
reusable assets
 The SEEA role is necessary to achieve a significant ROI for common process.
 Infrastructure
 An organization’s infrastructure provides human resources support, project-independent
research & development, & other capital software engineering assets.

2) Project organizations:

• The above figure shows a default project organization and maps project-level roles and
responsibilities.

• The main features of the default organization are as follows:
• The project management team is an active participant, responsible for producing as well as

managing.

Artifacts Activities

 Business case Customer interface, PRA interface

 Software development plan Planning, monitoring

 Status assessments Risk management
 Software process definition

 Process improvement

Figure 11-2. Default project organization and responsibilities

Software Management

Software Development Software Assessment Software Architecture

Administration System engineering

 63

• The architecture team is responsible for real artifacts and for the integration of components,
not just for staff functions.

• The development team owns the component construction and maintenance activities.
• The assessment team is separate from development.
• Quality is everyone’s into all activities and checkpoints.
• Each team takes responsibility for a different quality perspective.

3) EVOLUTION OF ORGANIZATIONS:

Inception

Elaboration

Transition

Construction

Inception:
Software management: 50%
Software Architecture: 20%
Software development: 20%
Software Assessment
(measurement/evaluation):10%

Elaboration:
Software management: 10%
Software Architecture: 50%
Software development: 20%
Software Assessment
(measurement/evaluation):20%

Construction:
Software management: 10%
Software Architecture: 10%
Software development: 50%
Software Assessment
(measurement/evaluation):30%

Transition:
Software management: 10%
Software Architecture: 5%
Software development: 35%
Software Assessment
(measurement/evaluation):50%

Software
Assessment

50%

Software
Management

10%

Software
Development

35%

Software
Architecture

5%

Software
Management

50%

Software
Assessment

10%

Software
Development

20%

Software
Architecture

20%

Software
Management

10%

Software
Assessment

20%

Software
Development

20%

Software
Architecture

50%

Software
Management

10%

Software
Assessment

30%

Software
Development

50%

Software
Architecture

10%

 64

The Process Automation:
Introductory Remarks:
The environment must be the first-class artifact of the process.
Process automation & change management is critical to an iterative process. If the change is expensive then
the development organization will resist it.
 Round-trip engineering & integrated environments promote change freedom & effective evolution of
technical artifacts.
Metric automation is crucial to effective project control.
External stakeholders need access to environment resources to improve interaction with the development team
& add value to the process.
The three levels of process which requires a certain degree of process automation for the corresponding process
to be carried out efficiently.
Metaprocess (Line of business): The automation support for this level is called an infrastructure.
Macroproces (project): The automation support for a project’s process is called an environment.
Microprocess (iteration): The automation support for generating artifacts is generally called a tool.

Tools: Automation Building blocks:
Many tools are available to automate the software development process. Most of the core software
development tools map closely to one of the process workflows

Workflows Environment Tools & process Automation
Management Workflow automation, Metrics automation
Environment Change Management, Document Automation
Requirements Requirement Management
Design Visual Modeling
Implementation -Editors, Compilers, Debugger, Linker, Runtime
Assessment -Test automation, defect Tracking
Deployment defect Tracking

 65

The Project Environment:
The project environment artifacts evolve through three discrete states.
(1) Prototyping Environment. (2) Development Environment. (3) Maintenance Environment.
The Prototype Environment includes an architecture test bed for prototyping project architecture to evaluate
trade-offs during inception & elaboration phase of the life cycle.
 The Development environment should include a full suite of development tools needed to support various
Process workflows & round-trip engineering to the maximum extent possible.
The Maintenance Environment should typically coincide with the mature version of the development.
There are four important environment disciplines that are critical to management context & the success of a
modern iterative development process.
Round-Trip engineering
Change Management
Software Change Orders (SCO)
Configuration baseline Configuration Control Board
 Infrastructure
Organization Policy
Organization Environment
Stakeholder Environment.

Round Trip Environment
Tools must be integrated to maintain consistency & traceability.
Round-Trip engineering is the term used to describe this key requirement for environment that support iterative
development.
As the software industry moves into maintaining different information sets for the engineering artifacts, more
automation support is needed to ensure efficient & error free transition of data from one artifacts to another.
Round-trip engineering is the environment support necessary to maintain Consistency among the engineering
artifacts.

 66

Change Management
Change management must be automated & enforced to manage multiple iterations & to enable change freedom.
Change is the fundamental primitive of iterative Development.
I. Software Change Orders
The atomic unit of software work that is authorized to create, modify or obsolesce components within a
configuration baseline is called a software change orders (SCO)
The basic fields of the SCO are Title, description, metrics, resolution, assessment & disposition

Change management
II. Configuration Baseline
A configuration baseline is a named collection of software components &Supporting documentation
that is subjected to change management & is upgraded, maintained, tested, statuses & obsolesced a unit
There are generally two classes of baselines
External Product Release
Internal testing Release
Three levels of baseline releases are required for most Systems

 67

 1. Major release (N)
2. Minor Release (M)
3. Interim (temporary) Release (X)
Major release represents a new generation of the product or project
A minor release represents the same basic product but with enhanced features, performance or quality.
 Major & Minor releases are intended to be external product releases that are persistent & supported
for a period of time.
An interim release corresponds to a developmental configuration that is intended to be transient.
Once software is placed in a controlled baseline all changes are tracked such that a distinction must be
made for the cause of the change. Change categories are
 Type 0: Critical Failures (must be fixed before release)
Type 1: A bug or defect either does not impair (Harm) the usefulness of the system or can be worked
around
 Type 2: A change that is an enhancement rather than a response to a defect
Type 3: A change that is necessitated by the update to the environment
Type 4: Changes that are not accommodated by the other categories.
Change Management
III Configuration Control Board (CCB)
A CCB is a team of people that functions as the decision
 Authority on the content of configuration baselines
A CCB includes:
1. Software managers
2. Software Architecture managers
 3. Software Development managers
4. Software Assessment managers
 5. Other Stakeholders who are integral to the maintenance of the controlled software delivery
system?
Infrastructure
 The organization infrastructure provides the organization’s capital assets including two key
artifacts - Policy & Environment
I Organization Policy:
A Policy captures the standards for project software development processes
The organization policy is usually packaged as a handbook that defines the life cycles & the process
primitives such as

 Major milestones
 Intermediate Artifacts
 Engineering repositories
 Metrics
 Roles & Responsibilities

 68

Infrastructure
 II Organization Environment
The Environment that captures an inventory of tools which are building blocks from which project
environments can be configured efficiently & economically

Stakeholder Environment
Many large scale projects include people in external organizations that represent other stakeholders
participating in the development process they might include

 Procurement agency contract monitors
 End-user engineering support personnel
 Third party maintenance contractors
 Independent verification & validation contractors
 Representatives of regulatory agencies & others.

These stakeholder representatives also need to access to development resources so that they can
contribute value to overall effort. These stakeholders will be access through on-line
An on-line environment accessible by the external stakeholders allow them to participate in the process
a follows
Accept & use executable increments for the hands-on evaluation.
 Use the same on-line tools, data & reports that the development organization uses to manage &
monitor the project
Avoid excessive travel, paper interchange delays, format translations, paper * shipping costs & other
overhead cost

 69

PROJECT CONTROL & PROCESS INSTRUMENTATION

INTERODUCTION: Software metrics are used to implement the activities and products of the
software development process. Hence, the quality of the software products and the achievements in
the development process can be determined using the software metrics.

Need for Software Metrics:

 Software metrics are needed for calculating the cost and schedule of a software product with
 great accuracy.
 Software metrics are required for making an accurate estimation of the progress.
 The metrics are also required for understanding the quality of the software product.

1.1 INDICATORS:
An indicator is a metric or a group of metrics that provides an understanding of the software
process or software product or a software project. A software engineer assembles measures and
produce metrics from which the indicators can be derived.
Two types of indicators are:
(i) Management indicators.
(ii) Quality indicators.

 70

1.1.1 Management Indicators
The management indicators i.e., technical progress, financial status and staffing progress are
used to determine whether a project is on budget and on schedule. The management indicators that
indicate financial status are based on earned value system.
1.1.2 Quality Indicators
The quality indicators are based on the measurement of the changes occurred in software.

1.2 SEVEN CORE METRICS OF SOFTWARE PROJECT
Software metrics instrument the activities and products of the software
development/integration process. Metrics values provide an important perspective for managing the
process. The most useful metrics are extracted directly from the evolving artifacts.
There are seven core metrics that are used in managing a modern process.

Seven core metrics related to project control:

Management Indicators Quality Indicators
􀀀 Work and Progress 􀀀 Change traffic and stability
􀀀 Budgeted cost and expenditures 􀀀 Breakage and modularity
􀀀 Staffing and team dynamics 􀀀 Rework and adaptability

􀀀 Mean time between failures (MTBF) and maturity
1.2.1 MANAGEMENT INDICATORS:
1.2.1.1 Work and progress
This metric measure the work performed over time. Work is the effort to be accomplished to
complete a certain set of tasks. The various activities of an iterative development project can be
measured by defining a planned estimate of the work in an objective measure, then tracking
progress (work completed overtime) against that plan.
The default perspectives of this metric are:
Software architecture team: - Use cases demonstrated.
Software development team: - SLOC under baseline change management, SCOs closed
Software assessment team: - SCOs opened, test hours executed and evaluation criteria meet.
Software management team: - milestones completed.

The below figure shows expected progress for a typical project with three major releases

Fig: work and progress

 71

1.2.1.2 Budgeted cost and expenditures
This metric measures cost incurred over time. Budgeted cost is the planned expenditure profile over the life
cycle of the project. To maintain management control, measuring cost expenditures over the project life cycle is
always necessary. Tracking financial progress takes on an organization - specific format. Financial performance
can be measured by the use of an earned value system, which provides highly detailed cost and schedule insight.
The basic parameters of an earned value system, expressed in units of dollars, are as follows:
Expenditure Plan - It is the planned spending profile for a project over its planned schedule. Actual progress -
It is the technical accomplishment relative to the planned progress underlying the spending profile.
Actual cost: It is the actual spending profile for a project over its actual schedule.
Earned value: It is the value that represents the planned cost of the actual progress.
Cost variance: It is the difference between the actual cost and the earned value.
Schedule variance: It is the difference between the planned cost and the earned value. Of all parameters in an
earned value system, actual progress is the most subjective
Assessment: Because most managers know exactly how much cost they have incurred and how much schedule
they have used, the variability in making accurate assessments is centred in the actual progress assessment. The
default perspectives of this metric are cost per month, full-time staff per month and percentage of budget
expended.
1.2.1.3 Staffing and team dynamics
This metric measures the personnel changes over time, which involves staffing additions and reductions over
time. An iterative development should start with a small team until the risks in the requirements and architecture
have been suitably resolved. Depending on the overlap of iterations and other project specific circumstances,
staffing can vary. Increase in staff can slow overall project progress as new people consume the productive team
of existing people in coming up to speed. Low attrition of good people is a sign of success. The default
perspectives of this metric are people per month added and people per month leaving. These three management
indicators are responsible for technical progress, financial status and staffing progress.

Fig: staffing and Team dynamics

 72

1.2.2 QUALITY INDICATORS:
1.2.2.1 Change traffic and stability:
This metric measures the change traffic over time. The number of software change orders opened and closed
over the life cycle is called change traffic. Stability specifies the relationship between opened versus closed
software change orders. This metric can be collected by change type, by release, across all releases, by term, by
components, by subsystems, etc.
The below figure shows stability expectation over a healthy project’s life cycle

Fig: Change traffic and stability

1.2.2.2 Breakage and modularity
This metric measures the average breakage per change over time. Breakage is defined as the average extent of
change, which is the amount of software baseline that needs rework and measured in source lines of code,
function points, components, subsystems, files or other units. Modularity is the average breakage trend over
time. This metric can be collected by revoke SLOC per change, by change type, by release, by components and
by subsystems.
1.2.2.3 Rework and adaptability:
This metric measures the average rework per change over time. Rework is defined as the average cost of change
which is the effort to analyse, resolve and retest all changes to software baselines. Adaptability is defined as the
rework trend over time. This metric provides insight into rework measurement. All changes are not created
equal. Some changes can be made in a staff- hour, while others take staff-weeks. This metric can be collected
by average hours per change, by change type, by release, by components and by subsystems.
1.2.2.4 MTBF and Maturity:
This metric measures defect rather over time. MTBF (Mean Time Between Failures) is the average usage time
between software faults. It is computed by dividing the test hours by the number of type 0 and type 1 SCOs.
Maturity is defined as the MTBF trend over time. Software errors can be categorized into two types
deterministic and nondeterministic. Deterministic errors are also known as Bohr-bugs and nondeterministic
errors are also called as Heisen-bugs. Bohr-bugs are a class of errors caused when the software is stimulated in a
certain way such as coding errors. Heisen-bugs are software faults that are coincidental with a certain
probabilistic occurrence of a given situation, such as design errors. This metric can be collected by failure
counts, test hours until failure, by release, by components and by subsystems. These four quality indicators are
based primarily on the measurement of software change across evolving baselines of engineering data.

 73

1.3 LIFE -CYCLE EXPECTATIONS:
There is no mathematical or formal derivation for using seven core metrics properly. However, there were
specific reasons for selecting them:
The quality indicators are derived from the evolving product rather than the artifacts.
They provide inside into the waste generated by the process. Scrap and rework metrics are a standard
measurement perspective of most manufacturing processes.
They recognize the inherently dynamic nature of an iterative development process. Rather than focus on the
value, they explicitly concentrate on the trends or changes with respect to time.
The combination of insight from the current and the current trend provides tangible indicators for management
action.

Table 13-3. the default pattern of life cycle evolution

Metric Inception Elaboration Construction Transition

Progress 5% 25% 90% 100%

Architecture 30% 90% 100% 100%

Applications <5% 20% 85% 100%

Expenditures Low Moderate High High

Effort 5% 25% 90% 100%

Schedule 10% 40% 90% 100%

Staffing Small team Ramp up Steady Varying

Stability Volatile Moderate Moderate Stable

Architecture Volatile Moderate Stable Stable

Applications Volatile Volatile Moderate Stable

Modularity 50%-100% 25%-50% <25% 5%-10%

Architecture >50% >50% <15% <5%

Applications >80% >80% <25% <10%

 74

Adaptability Varying Varying Benign. Benign

Architecture Varying Moderate Benign Benign

Applications Varying Varying Moderate Benign

Maturity Prototype Fragile Usable Robust

Architecture Prototype Usable Robust Robust

Applications Prototype Fragile Usable Robust

1.4 METRICS AUTOMATION:
Many opportunities are available to automate the project control activities of a software project. A Software
Project Control Panel (SPCP) is essential for managing against a plan. This panel integrates data from multiple
sources to show the current status of some aspect of the project. The panel can support standard features and
provide extensive capability for detailed situation analysis. SPCP is one example of metrics automation
approach that collects, organizes and reports values and trends extracted directly from the evolving engineering
artifacts.

SPCP:
To implement a complete SPCP, the following are necessary.

 Metrics primitives - trends, comparisons and progressions
 A graphical user interface.
 Metrics collection agents
 Metrics data management server
 Metrics definitions - actual metrics presentations for requirements progress, implementation progress,

assessment progress, design progress and other progress dimensions.
 Actors - monitor and administrator.

Monitor defines panel layouts, graphical objects and linkages to project data. Specific monitors called roles
include software project managers, software development team leads, software architects and customers.
Administrator installs the system, defines new mechanisms, graphical objects and linkages. The whole display
is called a panel. Within a panel are graphical objects, which are types of layouts such as dials and bar charts for
information. Each graphical object displays a metric. A panel contains a number of graphical objects positioned
in a particular geometric layout. A metric shown in a graphical object is labelled with the metric type, summary
level and insurance name (line of code, subsystem, server1). Metrics can be displayed in two modes – value,
referring to a given point in time and graph referring to multiple and consecutive points in time. Metrics can be
displayed with or without control values. A control value is an existing expectation either absolute or relative
that is used for comparison with a dynamically changing metric. Thresholds are examples of control values.

 75

The basic fundamental metrics classes are trend, comparison and progress.

The format and content of any project panel are configurable to the software project manager's preference for
tracking metrics of top-level interest. The basic operation of an SPCP can be described by the following top -
level use case.
i. Start the SPCP
ii. Select a panel preference
iii. Select a value or graph metric
iv. Select to superimpose controls
v. Drill down to trend
vi. Drill down to point in time.
vii. Drill down to lower levels of information
viii. Drill down to lower level of indicators.

10 Mark Questions
1. Define metric. Discuss seven core metrics for project control and process instrumentation
with suitable examples?
2. List out the three management indicators that can be used as core metrics on software
projects. Briefly specify meaning of each?
3. Explain the various characteristics of good software metric. Discuss the metrics Automation
using appropriate example?
4. Explain about the quality indicators that can be used as core metrics on software projects.
5. Explain Management Indicators with suitable example?
6. Define MTBF and Maturity. How these are related to each other?
7. Briefly explain about Quality Indicators?
8. Write short notes on Pragmatic software metrics?

 WEB SERVICES
UNIT-1

Evolution of Distributed Computing:-

 In the early years of computing, mainframe-based applications

were considered to be the best-fit solution for executing large-scale data processing

applications. With the advent of personal computers (PCs), the concept of software

programs running on standalone machines became much more popular in terms of the cost

of ownership and the ease of application use. With the number of PC-based application

programs running on independent machines growing, the communications between such

application programs became extremely complex and added a growing challenge in the

aspect of application-to-application interaction. Lately, network computing gained

importance, and enabling remote procedure calls (RPCs) over a network protocol called

Transmission Control Protocol/Internet Protocol (TCP/IP) turned out to be a widely

accepted way for application software communication. Since then, software application

running on a variety of hardware platforms, operating systems, and different networks

faced some challenges when required to communicate with each other and share data. This

demanding requirement leads to the concept of distributed computing applications. As a

definition, “Distributing Computing is a type of computing in which different components

and objects comprising an application can be located on different computers connected to a

network distributed computing model that provides an infrastructure enabling invocations

of object functions located anywhere on the network. The objects are transparent to the

application and provide processing power as if they were local to the application calling

them.

Importance of Distributed Computing

The distributed computing environment provides many significant

advantages compared to a traditional standalone
application. The following are
Some of those key advantages:
Higher performance. Applications can execute in
parallel and distribute the load across multiple servers.

Collaboration. Multiple applications can be connected
through standard distributed computing mechanisms.

Higher reliability and availability. Applications or servers can be clustered in multiple
machines.
Scalability. This can be achieved by deploying these reusable distributed components on
powerful servers.

Extensibility. This can be achieved through dynamic (re)configuration of applications that

are distributed across the network. Higher productivity and lower development cycle time.

By breaking up large problems into smaller ones, these individual components can be

enveloped by smaller development teams in isolation.

1

components. Reduced cost. Because this World model provide satfeuse once developed
components that are accessible over the network, significant cost educations can be
achieved.

Reuse. The distributed components may perform various se vices that can potentially be
used by multiple client applications. It saves repetitive development effort and improves
interoperability between

Distributed computing also has changed the way traditional network programming is done

by providing a shareable object like semantics across networks using programming

languages like Java, C, and C++ . The following sections briefly discuss core distributed

computing technologies such as Client/Server applications, OMG CORBA, Java RMI,

Microsoft COM/DCOM, and MOM.

Client-Server Applications

The early years of distributed application architecture were dominated by two-tier

business applications. In a two-tier architecture model, the first (upper) tier handles the

presentation and business logic of the user application (client), and the second/lower tier

handles the application organization and its data storage (server). This approach is

commonly called client-server applications architecture. Generally, the server in a

client/server application model is a database server that is mainly responsible for the

organization and retrieval of data. The application client in this model handles most of the

business processing and provides the graphical user interface of the application. It is a very

popular design in business applications where the user.
interface and business logic are tightly coupled with a database server for handling data
retrieval and processing.
For example, the client-server model has been widely used in enterprise resource planning
(ERP), billing, and Inventory application systems where a number of client business
applications residing in multiple desktop systems interact with a central database server.

Figure 1.2 shows an architectural model of a typical client server system in which multiple
desktop-based business client applications access a central database server.
Some of the common limitations of the client-server application model are as follows:
■ Complex business processing at the client side demands robust client systems.
■ Security is more difficult to implement because the algorithms and logic reside on the
client side making it more vulnerable to hacking.
■ Increased network bandwidth is needed to accommodate many calls to the server, which
can impose scalability restrictions.
■ Maintenance and upgrades of client applications are
extremely difficult because each client has to be maintained
separately.
■ Client-server architecture suits mostly database-oriented
standalone applications and does not target robust
reusable component oriented applications.

CORBA
The Common Object Request Broker Architecture (CORBA) is an industry wide, open

standard initiative, developed by the Object Management Group (OMG) for enabling

distributed computing that supports a wide range of application environments. OMG is a

nonprofit consortium responsible for the production and maintenance of framework

specifications for distributed and interoperable object-oriented systems.
CORBA differs from the traditional client/server model because it provides an object-

oriented solution that does not enforce any proprietary protocols or any particular

programming language, operating system, or hardware platform. By adopting CORBA, the

applications can reside and run on any hardware platform located anywhere on the

network, and can be written in any language that has mappings to a neutral interface

definition called the Interface Definition Language (IDL). An IDL is a specific interface

language designed to expose the services (methods/functions) of a CORBA remote object.

CORBA also defines a collection of system-level services for handling low-level application

services like life-cycle, persistence, transaction, naming, security, and so forth. Initially,

CORBA 1.1 was focused on creating component level, portable object applications without

interoperability. The introduction of CORBA 2.0 added interoperability between different

ORB vendors by implementing an Internet Inter-ORB Protocol (IIOP). The IIOP defines the

ORB backbone, through which other ORBs can bridge and provide interoperation with its

associated services. In a CORBA-based solution, the Object Request Broker (ORB) is an

object bus that provides a transparent mechanism for sending requests and receiving

responses to and from objects, regardless of the environment and its location. The ORB

intercepts the client’s call and is responsible for finding its server object that implements

the request, passes its parameters, invokes its method, and returns its results to the client.

The ORB, as part of its implementation, provides interfaces to the CORBA services, which

allows it to build custom-distributed application environments.

Figure 1.3 illustrates the architectural model of CORBA with an example representation of
applications written in C, C++, and Java providing IDL bindings.

3

 The CORBA architecture is composed of the following components:
IDL. CORBA uses IDL contracts to specify the application boundaries and to establish
interfaces with its clients. The IDL provides a mechanism by which the distributed
application component’s interfaces, inherited classes, events, attributes, and exceptions can
be specified.

ORB. It acts as the object bus or the bridge, providing the communication infrastructure to
send and receive request/responses from the client and server. It establishes the
foundation for the distributed application objects, achieving interoperability in a
heterogeneous environment. Some of the distinct advantages of CORBA over a traditional
client/server application model are as follows:
OS and programming-language independence. Interfaces between clients and servers
are defined in OMG IDL, thus providing the following advantages to Internet programming:
Multi-language and
multi-platform application environments, which provide a logical separation between
interfaces and implementation.
Legacy and custom application integration. Using CORBA IDL, developers can
encapsulate existing and custom applications as callable client applications and use them as
objects on the ORB.
Rich distributed object infrastructure. CORBA offers developers a rich set of distributed

object services, such as the Lifecycle, Events, Naming, Transactions, and Security services.

Location transparency. CORBA provides location transparency: An object reference is

independent of the physical location and application level location. This allows developers

to create CORBA-based systems where objects can be moved without modifying the

underlying applications.

 Java RMI
Java RMI was developed by Sun Microsystems as the standard mechanism to enable

distributed Java objects-based application development using the Java environment. RMI

provides a distributed Java application environment by calling remote Java objects and

passing them as arguments or return values. It uses Java object serialization—a lightweight

object persistence technique that allows the conversion of objects into streams. Before RMI,

the only way to do inter-process communications in the Java platform was to use the

standard Java network libraries. Though the java.net APIs provided sophisticated support

for network functionalities, they were not intended to support or solve the distributed computing
challenges.

Java RMI uses Java Remote Method Protocol (JRMP) as the inter process communication
protocol, enabling Java objects living in different Java Virtual Machines (VMs) to
Transparently invoke one another’s methods. Because these VMs can be running on
different computers anywhere on the network, RMI enables object-oriented distributed
computing. RMI also uses a reference-counting garbage collection mechanism that keeps
track f external live object references to remote objects (live connections) using the virtual
machine. When an object is found unreferenced, it is considered to be a weak reference and
it will be garbage collected.

4

In RMI-based application architectures, a registry (rmiregistry) - oriented mechanism
provides a simple non-persistent naming lookup service that is
used to store the remote object references

and to enable lookups from client

applications. The RMI infrastructure based

on the JRMP acts as the medium between the

RMI clients and remote objects. It intercepts

client requests, passes invocation

arguments, delegates invocation requests to

the RMI skeleton, and finally passes the

return values of the method execution to the

client stub. It also enables callbacks from

server objects to client applications so that

the asynchronous notifications can be
achieved. Figure 1.4 depicts the architectural model of a Java RMI-based application
solution.
The java RMI architecture is composed of the following components:
RMI client. The RMI client, which can be a Java applet or a standalone application, performs the
remote method invocations on a server object. It can pass arguments that are primitive data types or
serializable objects.

 RMI stub. The RMI stub is the client proxy generated by the rmi compiler (rmic

provided along with Java developer kit—JDK) that encapsulates the network information of

the server and performs the delegation of the method invocation to the server. The stub

also marshals the method arguments and unmarshals the return values from the method

execution.
RMI infrastructure. The RMI infrastructure consists of two layers: the remote reference
layer and the transport layer. The remote reference layer separates out the specific remote
reference behavior from the client stub. It handles certain reference semantics like
connection entries, which are unicast/multicast of the invocation requests. The transport
layer actually provides the networking infrastructure, which facilitates the actual data
transfer during method invocations, the passing of formal arguments, and the return of
back execution results. RMI skeleton. The RMI skeleton, which also is generated using the
RMI compiler (rmic) receives the invocation requests from the stub and processes the
arguments (unmarshalling) and delegates them to the RMI server. Upon successful method
execution, it marshals the return values and then passes them back to the RMI stub via the
RMI infrastructure.

5

RMI server. The server is the Java remote object that implements the exposed interfaces
and executes the client requests. It receives incoming remote method invocations from the
respective skeleton, which
passes the parameters after unmarshalling. Upon successful method execution, return
values are sent back to the skeleton, which passes them back to the client via the RMI
infrastructure.

Microsoft DCOM
The Microsoft Component Object Model (COM) provides a way for Windows-based

software components to communicate with each other by defining a binary and network

standard in a Windows operating environment. COM evolved from OLE (Object Linking and

Embedding), which employed a Windows registry-based object organization mechanism.

COM provides a distributed application model for ActiveX components. As a next step,

Microsoft developed the Distributed Common Object
Model (DCOM) as its answer to the

distributed computing problem in the

Microsoft Windows platform. DCOM

enables COM applications to

communicate with each other using an

RPC mechanism, which employs a DCOM

protocol on the wire.

Figure 1.5 shows an architectural model of DCOM. DCOM applies a skeleton and stub

approach whereby a defined interface that exposes the methods of a COM object can be

invoked remotely over a network. The client application will invoke methods on such a

remote COM object in the same fashion that it would with a local COM object. The stub

encapsulates the network location information of the COM server object and acts as a proxy

on the client side. The servers can potentially host multiple COM objects, and when they

register themselves against a registry, they become available for all the clients, who then

discover them using a lookup mechanism.

6

DCOM is quite successful in providing distributed computing support on the Windows
platform. But, it is limited to Microsoft application environments. The following are some of
the common limitations of DCOM:
■ Platform lock-in
■ State management
■ Scalability
■ Complex session management issues

Message-Oriented Middleware
Although CORBA, RMI, and DCOM differ in their basic architecture and approach, they

adopted a tightly coupled mechanism of a synchronous communication model

(request/response). All these technologies are based upon binary communication

protocols and adopt tight integration across their logical tiers, which is susceptible to

scalability issues. Message-Oriented Middleware (MOM) is based upon a loosely coupled

asynchronous communication model where the application client does not
need to know its application recipients or its method arguments. MOM enables applications
to communicate indirectly using a messaging provider queue. The application client sends
messages to the message queue (a message holding
area), and the receiving application picks up the

message from the queue. In this operation model, the
application sending messages to another application
continues to operate without waiting for the response
from that application.

MS provides Point-to-Point and Publish/Subscribe

messaging models with the following features:
■ Complete transactional capabilities
■ Reliable message delivery
■ Security

Some of the common challenges while implementing a MOM-based
application environment have been the following:

■ Most of the standard MOM implementations have provided native APIs for
communication with their core infrastructure. This has affected the portability of
applications across such implementations and has led to a specific vendor lock-in.
■ The MOM messages used for integrating applications are usually based upon a
proprietary message format without any standard compliance.

7

Challenges in Distributed Computing
Distributed computing technologies like CORBA, RMI, and DCOM have been quite

successful in integrating applications within a homogenous environment inside a social

area network. As the Internet becomes a logical solution that spans and connects the

boundaries of businesses, it also demands the interoperability of applications across

networks. This section discusses some of the common challenges noticed in the CORBA-,

RMI-, and DCOM-based distributed computing solutions:
■ Maintenance of various versions of stubs/skeletons in the client and server
environments is extremely complex in a heterogeneous network environment.
■ Quality of Service (QoS) goals like Scalability, Performance, and Availability in a
distributed environment consume a major portion f the application’s development time.
■ Interoperability of applications implementing different protocols on heterogeneous
platforms almost becomes impossible. For example, a DCOM client communicating to an
RMI server or an RMI client
communicating to a DCOM server.
■ Most of these protocols are designed to work well within local networks. They are not
very firewall friendly or able to be accessed over the Internet.

The Role of J2EE and XML in Distributed Computing
The emergence of the Internet has helped enterprise applications to be easily accessible

over the Web without having specific client-side software installations. In the Internet-

based enterprise application model, the focus was to move the complex business

processing toward centralized servers in the back end. The first generation of Internet

servers was based upon Web servers that hosted static Web pages and provided content to

the clients via H P (Hyper ext Transfer Protocol). HTTP is a stateless protocol that connects

Web browsers to Web servers, enabling the transportation of HTML content to the user.

With the high popularity and potential of this infrastructure, the push for a more dynamic

technology was inevitable. This was the beginning of server-side scripting using

technologies like CGI, NSAPI, and ISAPI. With many organizations moving their businesses

to the Internet, a whole new category of business models like business-to-business (B2B)

and business-to-consumer (B2C) came into existence.

This evolution lead to the specification of J2EE architecture, which promoted a much more

efficient platform for hosting Web-based applications. J2EE provides a programming model based

 upon Web and business components that are managed by the J2EE application server.

8

The application server consists of many
APIs and low-level services available to the

components. These low-level services provide

security, transactions, connections and instance

pooling, and concurrency services, which enable a

J2EE developer to focus primarily on business logic

rather than plumbing. The power of Java and its

rich collection of APIs provided the perfect

solution for developing highly transactional, highly

available and scalable enterprise applications.

Based on many standardized industry

specifications, it provides the interfaces to connect
with various back-end legacy and information systems. J2EE also provides excellent client

connectivity capabilities, ranging from PDA to Web browsers to Rich Clients (Applets,

CORBA applications, and Standard Java Applications). Figure 1.7 shows various

components of the J2EE architecture. A typical J2EE architecture is physically divided in to

three logical tiers, which enables clear separation of the various application components

with defined roles and responsibilities. The following is a breakdown of functionalities of

those logical tiers:
Presentation tier. The Presentation tier is composed of Web components, which handle
HTTP quests/responses, Session management, Device independent content delivery, and
the invocation of business tier components.

Application tier. The Application tier (also known as the Business tier) deals with the core
business logic processing, which may typically deal with workflow and automation. The
business components
retrieve data from the information systems with well-defined APIs provided by the
application server.
Integration tier. The Integration tier deals with connecting and communicating to back-
end Enterprise Information Systems (EIS), database applications and legacy applications,
or mainframe applications.

9

UNIT 2
Emergence of Web Services
Today, the adoption of the Internet and enabling Internet-based applications has created a
world of discrete business applications, which co-exist in the same technology space but
without interacting with each other. The increasing demands of the industry for enabling
B2B, application-to application
(A2A), and inter-process application communication has led to a growing requirement for
service-oriented architectures. Enabling service- oriented applications facilitates the
exposure of business applications as service components enable business applications from
other organizations
to link with these services for application interaction and data sharing without human
intervention. By leveraging this architecture, it also enables interoperability between
business applications and processes.
By adopting Web technologies, the service-oriented architecture model facilitates the

delivery of services over the Internet by leveraging standard technologies such as XML. It

uses platform-neutral standards by exposing the underlying application components and

making them available to any application, any platform, or any device, and at any location.

Today, this phenomenon is well adopted for implementation and is commonly referred to

as Web services. Although this technique enables
communication between applications with the

addition of service activation technologies and open

technology standards, it can be leveraged to publish

the services in a register of yellow pages available on

the Internet. This will further redefine and transform

the way businesses communicate over the Internet.

This promising new technology sets the strategic

vision of the next generation of virtual business

models and the unlimited potential for organizations

doing business collaboration and business process

management over the Internet.

What Are Web Services
Web services are based on the concept of service-

oriented architecture (SOA). SOA is the latest

evolution of distributed computing, which enables

software components, including application functions,

objects, and processes from different systems, to be

exposed as services. According to Gartner research

10

(June 15, 2001), “Web services are loosely coupled software components delivered over
Internet standard technologies.” In short, Web services are self-describing and modular
business applications that expose the business logic as services over the Internet through
programmable interfaces and using Internet protocols for the purpose of providing ways to
find, subscribe, and invoke those services. Based on XML standards, Web services can be
developed as loosely coupled application components using any programming language,
any protocol, or any platform. This facilitates delivering business applications as a service
accessible to anyone, anytime, at any location, and using any platform. Consider the simple
example shown in Figure 2.1 where a travel reservation services provider exposes its
business applications as Web services supporting a variety of customers and application
clients. These business applications are provided by different travel organizations residing
at different networks and geographical locations.

Motivation and Characteristics
Web-based B2B communication has been around f r

quite some time. These Web-based B2B solutions are

usually based on custom and proprietary technologies

and are meant for exchanging data and doing

transactions over the Web. However, B2B has its own

challenges. For example, in B2B communication,

connecting new or existing applications and adding

new business partners have always been a challenge.

Due to this fact, in some cases the scalability of the

underlying business applications is affected. Ideally,

the business applications and information from a

partner organization should be able to interact with

the application of the potential partners seamlessly
without redefining the system or its resources. To meet these challenges, it is clearly

evident that there is a need for standard protocols and data formatting for enabling

seamless and scalable B2B applications and services. Web services provide the solution to

resolve these issues by adopting open standards. Figure 2.2 shows a typical B2B

infrastructure (e-marketplace) using XML for encoding data between applications across

the Internet.
Web services enable businesses to communicate, collaborate, conduct business
transactions using a lightweight infrastructure by adopting an XML-based data exchange
format and industry standard delivery protocols.

11

The basic characteristics of a Web services application model are as follows:

■ Web services are based on XML messaging, which means that the data exchanged
between the Web service provider and the user are
defined in XML.
■ Web services provide a cross-platform integration of business applications over the
Internet.
■ To build Web services, developers can use any common programming
language, such as Java, C, C++, Perl, Python, C#, and/or Visual Basic, and its existing
application components.
■ Web services are not meant for handling presentations like HTML context—it is
developed to generate XML for uniform accessibility through any software application, any
platform, or device.

■ Because Web services are based on loosely coupled application components, each
component is exposed as a service with its unique functionality.
■ Web services use industry-standard protocols like HTTP, and they can be easily
accessible through corporate firewalls.
■ Web services can be used by many types of clients.
■ Web services vary in functionality from a simple request to a complex business
transaction involving multiple resources.
■ All platforms including J2EE, CORBA, and Microsoft .NET provide
extensive support for creating and deploying eb services.
■ Web services are dynamically located and invoked from public and private registries
based on industry standards such as UDDI and ebXML.

Why Use Web Services
Traditionally, Web applications enable interaction between an end user and a Web site,

while Web services are service-oriented and enable application to- application

communication over the Internet and easy accessibility to heterogeneous applications and

devices. The following are the major technical reasons for choosing Web services over Web

applications:
■ Web services can be invoked through XML-based RPC mechanisms across firewalls.
■ Web services provide a cross-platform, cross-language solution based on XML messaging.
■ Web services facilitate ease of application integration using a lightweight infrastructure
without affecting scalability.
■ Web services enable interoperability among heterogeneous applications.

Web Services Architecture and Its Core Building Blocks
The basic principles behind the Web services architecture are based on SOA and the
Internet protocols. It represents a composable application solution based on standards and

12

standards-based technologies. This ensures that the implementations of Web services
applications are compliant to standard
specifications, thus enabling interoperability with those compliant applications.
Some of the key design requirements of the Web services architecture are the following:
■ To provide a universal interface and a consistent solution model to define the application
as modular components, thus enabling them as exposable services
■ To define a framework with a standards-based infrastructure mo el and protocols to
support services-based applications over the Internet
■ To address a variety of service delivery scenarios ranging from e-business (B2C),
business-to-business (B2B), peer-to-peer (P2P), and enterprise application integration
(EAI)-based application communication
■ To enable distributable modular applications as a centralized and decentralized
application environment that supports boundary-less application communication for inter-
enterprise and intra-enterprise application connectivity
■ To enable the publishing of services to one or more public or private directories, thus
enabling potential users to locate the published services using standard-based mechanisms
that are defined by standards organizations
■ To enable the invocation of those services when it is required, subject to authentication,
authorization, and other security measures

Web Services Description Language (WSDL)
The Web Services Description Language, or WDDL, is an XML schema based specification
for describing Web services as a collection of operations and data input/output parameters
as messages. WSDL also defines the communication model with a binding mechanism to
attach any transport
protocol, data format, or structure to an abstract message, operation, or endpoint. Listing
3.2 shows a WSDL example that describes a Web service meant for obtaining a price of a
book using a GetBookPrice operation.

<?xml version=”1.0”?>
<definitions name=”BookPrice”
targetNamespace=”http://www.wiley.com/bookprice.wsdl
” xmlns:tns=http://www.wiley.com/bookprice.wsdl

Web Services Communication Models
In Web services architecture, depending upon the functional requirements, it is possible to
implement the models with RPC-based synchronous or messaging-based
synchronous/asynchronous communication models. These communication models need
to be understood before Web services are designed and implemented.

13

RPC-Based Communication Model
The RPC-based communication model defines a request/response-based,synchronous

communication. When the client sends a request, the client waits until a response is sent

back from the server before continuing any operation. Typical to implementing CORBA or

RMI communication, the RPC-based Web services are tightly coupled and are implemented

with remote objects to the client application. Figure 3.3 represents an RPC-based

communication model in Web services architecture. The clients have the capability to

provide parameters in method calls to the Web service provider. Then, clients invoke the

Web services by sending parameter
values to the Web service provider that
executes the required
methods, and then sends back the return

values. Additionally, using RPC based

communication, both the service provider

and requester can register and discover

services, respectively.

Implementing Web Services
The process of implementing Web services is quite similar to implementing any distributed
application using CORBA or RMI. However, in web services, all the components are bound
dynamically only at its runtime using
standard protocols. Figure 3.5
illustrates the process highlights of
implementing Web services. As
illustrated in Figure 3.5, the basic steps
of implementing Web services are as
follows:
1.The service provider creates the
Web service typically as SOAPbased
service interfaces for exposed business
applications. he provider then deploys
them in a service container or using a

SOAP runtime environment, and then
makes them available for invocation
over a network. The service provider
also describes the Web service as a
WSDL-based service description,
which defines the clients and the
service container with a consistent

14

way of identifying the service location, operations, and its communication model.
2. The service provider then registers the WSDL-based service description with a service
broker, which is typically a UDDI registry.
3. The UDDI registry then stores the service description as binding templates and URLs to
WSDLs located in the service provider environment.
4. The service requester then locates the required services by querying the UDDI registry.
The service requester obtains the binding information and the URLs to identify the service
provider.
5. Using the binding information, the service requester then invokes the service provider
and then retrieves the WSDL Service description for those registered services. Then, the
service requester creates
a client proxy application and establishes communication with the service provider using
SOAP.
6. Finally, the service requester communicates with the service provider and exchanges
data or messages by invoking the available services in the service container.

In the case of an ebXML-based environment, the steps just shown are the same, except
ebXML registry and repository, ebXML Messaging, and ebXML CPP/CPA are used instead of
UDDI, SOAP, and WSDL, respectively. The basic steps just shown also do not include the
implementation of security and quality of service (QoS) tasks. Web Services Security.” So
far we have explored the Web services architecture and technologies. Let’s now move
forward to learn how to develop web services-enabled applications as services using the
Web services architecture.

WSDL Limitations

There are some limitations to consider when using the WSDL-first approach and svcutil to
create Contract files.
Declared Faults
When the WSDL contains declared faults:
•Specify the /UseSerializerForFaults argument during proxy code generation. For example:

svcutil /UseSerializerForFaults *.wsdl *.xsd.
If a port type of an operation includes Fault child node, the operation must use Document

•style.
•The fault part should refer to element but not type. For example:
Supported

<message name="SimpleTypeFault">

<part name="SimpleTypeFault" element="ns2:StringFaultElement" />

</message>
The following is incorrect for faults:
Not Supported

<message name="SimpleTypeFault">

<part name="SimpleTypeFault" type="xs:string" />

15

</message>
Removing OperationFormatStyle.Rpc Attribute
The OperationFormatStyle.Rpc attribute is not supported if the operation also has the fault
contract attribute.
If the generated proxy code contains an attribute OperationFormatStyle.Rpc, then you must
regenerate the WSDL from the code after deleting the attribute.
Identical part Elements
The part elements of messages cannot be same. If the elements are identical, svcutil throws
an error. For example, this definition is allowed:
Supported

<message name="MultipartInputElement">

<part name="Fortune" element="ns2:PersonDetailsElementsOne" />

<part name="Person" element="ns2:PersonDetailsElementsTwo" />

</message>

This definition, where the parts refer to same element, is incorrect:
Not Supported

<message name="MultipartInputElement">

<part name="Fortune" element="ns2:PersonNestedElements" />

<part name="Person" element="ns2:PersonNestedElements" />

</message>
Mixed Type Messages
Mixed type messages are not supported. All message parts must refer to either element or
type.
For example, the following definition is not permitted:
Not Supported

<message name="MultipartInputElement">

<part name="Fortune" element="ns2:PersonDetailsElementsOne" />

<part name="Person" type="xs:string" />

</message>

16

UNIT-3

XML document structures

An XML document object is a structure that contains a set of nested XML element
structures. The following image shows a section of the cfdump tag output for the

 document object for the XML in A simple XML document. This image shows
the long version of the dump, which provides complete details
about the document object. Initially, ColdFusion displays a short
version, with basic information. Click the dump header to change
between short, long, and collapsed versions of the dump.

The following code displays this output. It assumes that y u save
the code in a file under your web root, such as
C:\Inetpub\wwwroot\testdocs\employeesimple.xml

<cffile action="read"
file="C:\Inetpub\wwwroot\testdocs\employeesimple.xml"

variable="xmldoc">

<cfset mydoc = XmlParse(xmldoc)>

<cfdump var="#mydoc#">

The document object structure

At the top level, the XML document object has the following three entries:

Entry name Type Description

XmlRoot Element The root element of the document.

XmlComment String A string made of the concatenation of all comments on the

 document, that is, comments in the document prologue and

 epilog. This string does not include comments inside

 document elements.

XmlDocType XmlNode The DocType attribute of the document. This entry only

 exists if the document specifies a DocType. This value is

 read-only; you cannot set it after the document object has

 17

been created

This entry does not appear when the cfdump tag displays an
XML element structure.

The element structure

Each XML element has the following entries:

Entry name Type Description

XmlName String The name of the element; includes the namespace prefix.

XmlNsPrefix String The prefix of the namespace.

XmlNsURI String The URI of the namespace.

XmlText or String A string made of the concatenation f all text and CData

 text in the element, but n t inside any child elements.
XmlCdata When you assign a value to the XmlCdata element,

 ColdFusion puts the text inside a CDATA information item.
 then you retrieve information from document object,
 these element names return identical values.

XmlComment String A string made of the concatenation of all comments inside

 the XML element, but not inside any child elements.

XmlAttributes Structure All of this element's attributes, as name-value pairs.

XmlChildren Array All this element's children elements.

XmlParent XmlNode The parent DOM node of this element.

 This entry does not appear when the cfdump tag displays

 an XML element structure.

XmlNodes Array An array of all the XmlNode DOM nodes contained in this

 element.

 This entry does not appear the cfdump tag when displays

 an XML element structure.

18

XML DOM node structure

The following table lists the contents of an XML DOM node structure:

 Entry Type Description

 name

 XmlName String The node name. For nodes such as Element or Attribute, the no e

 name is the element attribute name.

 XmlType String The node XML DOM type, such as Element or Text.

 XmlValue String The node value. This entry is used only for Attribute, CDATA,
 Comment, and Text type nodes.

Note: The tag does not display XmlNode structures. If you try to dump an Xm Node structure,
the cfdump tag displays "Empty Structure."

The following table lists the contents of the XmlName and XmlValue fields for each node

type that is valid in the XmlType entry. The node types
correspond to the object types in

the XML DOM hierarchy.

Node type

 XmlName xmlValue

 CDATA #cdata- section Content of the CDATA
 section

 COMMENT #comment Content of the comment

 ELEMENT Tag name Empty string

 ENTITYREF Name of entity referenced Empty string

 PI (processing Target entire content excluding Empty string
 instruction) the target

 TEXT #text Content of the text node

 EN I Y Entity name Empty string

 O A ION Notation name Empty string

 DOCUME #document Empty string

 FRAGME #document-fragment Empty string

DOCTYPE

Document type name Empty string

Note:AlthoughXMLattributesarenodes on the DOM tree, ColdFusion does not expose them as XML

DOM node data structures. To view an element's attributes, use the element structure's

XMLAttributes structure.

The XML document object and all its elements are exposed as DOM node structures. For
example, you can use the following variable names to reference nodes in the DOM tree
that you created from the XML example in A simple XML document:

mydoc.XmlName

mydoc.XmlValue

mydoc.XmlRoot.XmlName

mydoc.employee.XmlType

mydoc.employee.XmlNodes[1].XmlType

XML namespace:-

XML namespaces are used for providing uniquely named elements and attributes in an
XML document. They are defined in a W3C recommendation. An XML instance may contain
element or attribute names from more than one XML vocabulary. If each vocabulary is
given a namespace, the ambiguity between identically named elements or attributes can be
resolved.

A simple example would be to consider an XML instance that contained references to a
customer and an ordered product. Both the customer element and the product element
could have a child element named id . References to the id element would therefore be
ambiguous; placing them in different namespaces would remove the ambiguity.

A namespace name is a uniform resource identifier (URI). Typically, the URI chosen for the

namespace of a given XML vocabulary describes a resource under the control of the author

or organization defining the vocabulary, such as a URL for the author's Web server.

However, the namespace specification does not require nor suggest that the namespace

URI be used to retrieve information; it is simply treated by an XML parser as a string. For

example, the document at http://www.w3.org/1999/xhtml itself does not contain any

code. It simply describes the XHTML namespace to human readers. Using a URI (such as

"http://www.w3.org/1999/xhtml") to identify a namespace, rather than a simple string

(such as "xhtml"), reduces the probability of different namespaces using duplicate

identifiers.

Although the term namespace URI is widespread, the W3C Recommendation refers to it as
the namespace name. The specification is not entirely prescriptive about the precise rules
for namespace names (it does not explicitly say that parsers must reject documents where
the namespace name is not a valid Uniform Resource Identifier), and many XML parsers

The XML document object and all its elements are exposed as DOM node structures. For
example, you can use the following variable names to reference nodes in the DOM tree
that you created from the XML example in A simple XML document:

mydoc.XmlName

mydoc.XmlValue

mydoc.XmlRoot.XmlName

mydoc.employee.XmlType

mydoc.employee.XmlNodes[1].XmlType

XML namespace:-

XML namespaces are used for providing uniquely named elements and attributes in an
XML document. They are defined in a W3C recommendation. An XML instance may contain
element or attribute names from more than one XML vocabulary. If each vocabulary is
given a namespace, the ambiguity between identically named elements or attributes can be
resolved.

A simple example would be to consider an XML instance that contained references to a
customer and an ordered product. Both the customer element and the product element
could have a child element named id . References to the id element would therefore be
ambiguous; placing them in different namespaces would remove the ambiguity.

A namespace name is a uniform resource identifier (URI). Typically, the URI chosen for the

namespace of a given XML vocabulary describes a resource under the control of the author

or organization defining the vocabulary, such as a URL for the author's Web server.

However, the namespace specification does not require nor suggest that the namespace

URI be used to retrieve information; it is simply treated by an XML parser as a string. For

example, the document at http://www.w3.org/1999/xhtml itself does not contain any

code. It simply describes the XHTML namespace to human readers. Using a URI (such as

"http://www.w3.org/1999/xhtml") to identify a namespace, rather than a simple string

(such as "xhtml"), reduces the probability of different namespaces using duplicate

identifiers.

Although the term namespace URI is widespread, the W3C Recommendation refers to it as
the namespace name. The specification is not entirely prescriptive about the precise rules
for namespace names (it does not explicitly say that parsers must reject documents where
the namespace name is not a valid Uniform Resource Identifier), and many XML parsers

20

allow any character string to be used. In version 1.1 of the recommendation, the namespace
name becomes an Internationalized Resource Identifier, which licenses the use of non-
ASCII characters that in practice were already accepted by nearly all XML software. The

term namespace URI persists, however, not only in popular usage, but also in many other

specifications from W3C and elsewhere World.
Following publication of the Namespaces recommendation, there was an intensive
elaborate about how a relative URI should be handled, with some intensely arguing that it
should simply be treated as a character string, and others arguing with conviction that it
should be
turned into an absolute URI by resolving it against the base URI of the document The result
of the debate was a ruling from W3C that relative URIs we e deprecated

The use of URIs taking the form of URLs in the http scheme (such as
http://www.w3.org/1999/xhtml) is common, despite the absence of any formal
relationship with the HTTP protocol. The Namespaces specification does not say what
should happen if such a URL is dereferenced (that is, if software attempts to retrieve a
document from this location). One convention adapted by s me users is to place an RDDL
document at the location. In general, however, users should assume that the namespace
URI is simply a name, not the address of a document n the Web.

SOAP initially was developed by Develop Mentor, Inc., as a platform independent protocol

for accessing services, objects between applications, and servers using HTTP-based

communication. SOAP used an XML - based vocabulary for representing RPC calls and its

parameters and return values. In 1999, the SOAP 1.0 specification was made publicly

available as a joint effort supported by vendors like ogue Wave, IONA, Object Space, Digital

Creations, UserLand, Microsoft, and DevelopMentor. Later, the SOAP 1.1 specification was

released as a W3C Note, with additional contributions from IBM and the Lotus Corporation

supporting a wide range of systems and communication models like RPC and messaging.

Nowadays, the current version of SOAP 1.2 is part of the W3C XML Protocol Working

Group effort led by vendors such as Sun Microsystems, IBM, HP, BEA, Microsoft, and Oracle.

At the time of this book’s writing, SOAP 1.2 is available as a public W3C working draft. To

find out the current status of the SOAP specifications produced by the XML Protocol

Working Group, refer to the W3C Web site at www.w3c.org.

21

The Emergence of SOAP

Understanding SOAP Specifications

The SOAP 1.1 specifications define the following:

■■ Syntax and semantics for representing XML documents as structured SOAP messages

■■ Encoding standards for representing data in SOAP messages

■■ A communication model for exchanging SOAP messages

■■ Bindings for the underlying transport protocols such as SOAP transport ■■

Conventions for sending and receiving messages using RPC and messaging

Note that SOAP is not a programming language a business application component for

building business applications. SOAP is intended for use as a portable communication

protocol to deliver SOAP messages, which have to be created and processed by an

application. In general, SOAP is simple and extensible by design, but unlike other

distributed computing protocols, the following features are n t supported by SOAP:

■ Garbage collection

■ Object by reference

■ Object activation

■ Message batching

SOAP and ebXML are complementary to each other. In fact, SOAP is leveraged by an ebXML

Messaging service as a communication protocol with an extension that provides added

security and reliability for handling business transactions in e-business and B2B

frameworks. More importantly, SOAP adopts XML syntax and standards like XML Schema

and namespaces as part of its message structure. To understand the concepts of XML

notations, XML Schema, and namespaces, refer to Chapter 8, “XML Processing and Data

Binding with Java APIs.” Now, let’s take a closer look at the SOAP messages, standards,

conventions, and other related technologies, and how they are represented in a

development process.

Structure of SOAP messages:-
Usually a SOAP message requires defining two basic namespaces: SOAP
Envelope and SOAP Encoding. The following list their forms in both versions 1.1 and 1.2 of
SOAP.

22

SOAP ENVELOPE
■ http://schemas.xmlsoap.org/soap/envelope/ (SOAP 1.1)
■ http://www.w3.org/2001/06/soap-envelope (SOAP 1.2)
SOAP ENCODING
■ http://schemas.xmlsoap.org/soap/encoding/ (SOAP 1.1)
■ http://www.w3.org/2001/06/soap-encoding (SOAP 1.2)
Additionally, SOAP also can use attributes and values defined in W3C XML Schema

instances or XML Schemas and can use the elements based on custom XML conforming to

W3C XML Schema specifications. SOAP does not support or use DTD-based element or

attribute declarations. To
understand the fundamentals of XML namespaces, refer to Chapter 8, “XML Processing and
Data Binding with Java APIs.” Typical to the previous example message, the structural
format of a
SOAP message (as per SOAP version 1.1 with attachments) contains the following
elements:

■ Envelope
■ Header (optional)
■ Body
■ Attachments (optional)
Figure 4.1 represents the structure of a SOAP

message with attachments.Typically, a SOAP

message is represented by a SOAP envelope

with zero or more attachments. The SOAP

message envelope contains the header and

body of the message, and the SOAP message

attachments enable the message to contain

data, which include XML and non-XML data

(like text/binary files). In
fact, a SOAP message
package is constructed
using the MIME

Multipart/Related

structure approaches to

separate and identify the

different parts of the

message. Now, let’s

explore the details and

characteristics of the parts

of a SOAP message.

23

What is SOAP:-

SOAP is the standard messaging protocol used by Web services. SOAP’s primary
application is inter application communication. SOAP codifies the use of XML as an
encoding scheme for request and response parameters using HTTP as a means for
transport.

SOAP covers the following four main areas:

– A message format for one-way communication describing how a message can be
packed into an XML document.

– A description of how a SOAP message should be transported using HTTP (for Web-
based interaction) or SMTP (for e-mail-based interaction).

– A set of rules that must be followed when processing a SOAP message and a
simple classification of the entities involved in processing a SOAP message.

– A set of conventions on how to turn an RPC call into a SOAP message and back.

24

25

26

SOAP Envelope

The SOAP envelope is the primary container of a SOAP message’s structure and is the

mandatory element of a SOAP message. It is represented as the root element of the message as

Envelope. As we discussed earlier, it is usually declared as an element using the XML

namespace ttp://schemas .xmlsoap.org/soap/envelope/. As per SOAP 1.1 specifications, SOAP

messages that do not follow this namespace declaration are not processed and are considered

to be invalid. Encoding styles also can be defined using a namespace under Envelope to

represent the data types used in the message. Listing 4.3 shows the SOAP envelope element in

a SOAP message.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
SOAP-ENV:
encodingStyle=”http://schemas.xmlsoap.org/soap/enc ding/”/>

<!--SOAP Header elements - -/>

<!--SOAP Body element - -/>
</SOAP-ENV:Envelope>

SOAP Header
The SOAP header is represented as the first immediate child element of a SOAP envelope,
and it has to be namespace qualified. In addition, it also may contain zero or more optional
child elements, which are referred to as SOAP header entries. The SOAP encoding Style
attribute will be used to
define the encoding of the data types used in header element entries. The SOAP actor
attribute and SOAP must Understand attribute can be used to indicate the target SOAP
application node sender/Receiver/Intermediary) and to process the Header entries. Listing
4.4 shows the sample representation of a SOAP header element in a SOAP message.

<SOAP-E V:Header>
<wiley:Transaction

xmlns:wiley=”http://jws.wiley.com/2002/booktx”
SOAP-E V:mustUnderstand=”1”>
<keyValue> 5 </keyValue>

</wiley:Transaction>
</SOAP-ENV:Header>

27

SOAP Body
A SOAP envelope contains a SOAP body as its child element, and it may contain one or more
optional SOAP body block entries. The Body represents the mandatory processing
information or the payload intended for the receiver of the message. The SOAP 1.1
specification mandates that there must be one or more optional SOAP Body entries in a
message. A Body block of a SOAP message can contain any of the following:
■ RPC method and its parameters

■ Target application (receiver) specific data
■ SOAP fault for reporting errors and status information
Listing 4.5 illustrates a SOAP body representing an RPC call for getting the book price
information from www.wiley.com for the book name Developing Java Web Services.

<SOAP-ENV:Body>
<m:GetBookPrice
xmlns:m=”http://www.wiley.com/jws.book.priceList/”>

<bookname xsi:type=’xsd:string’>
Developing Java Web services</bookname>
</m:GetBookPrice>

</SOAP-ENV:Body>

SOAP Encoding
SOAP 1.1 specifications stated that SOAP- based applications can represent their data either
as literals or as encoded values defined by the “XML Schema, Part -2” specification (see
ww.w3.org/TR/xmlschema-2/). Literals refer to message contents that are encoded

according to the W3C XML Schema. Encoded values refer to the messages encoded based

on SOAP encoding styles specified in SOAP Section 5 of the SOAP 1.1 specification. The

namespace identifiers for these SOAP encoding styles are defined in

http://schemas.xmlsoap.org/soap/encoding/(SOAP1.1)and

http://www.w3.org/2001/06/soap-encoding (SOAP 1.2). The SOAP encoding defines a set

of rules for expressing its data types. It is a generalized set of data types that are

represented by the programming languages, databases, and semi-structured data required

for an application. SOAP encoding also defines serialization rules for its data model using

an encoding Style attribute under the SOAP-ENV namespace that specifies the serialization

rules for a specific element or a group of elements. SOAP encoding supports both simple-

and compound-type values.
SOAP Messaging
SOAP Messaging represents a loosely coupled communication model based on message

notification and the exchange of XML documents. The SOAP message body is represented

by XML documents or literals encoded according to a specific W3C XML schema, and it is

produced and consumed by sending or receiving SOAP node(s). The SOAP sender node

sends a message with an XML document as its body message and the SOAP receiver node

28

processes it.4.26 represents a SOAP message and a SOAP messaging-based communication.

The message contains a header block Inventory Notice and the body product, both of which

are application-defined and not defined by SOAP. The header contains information

required by the receiver node and the body contains the actual message to be delivered.

29

UNIT-4

Universal Description, Discovery and Integration (UDDI)

is a platform-independent, extensible world markup language(XML)-based registry by which

businesses worldwide can list themselves on the Internet, and a mechanism to register and

locate web service applications. UDDI is an open industry initiative, sponsored by the

Organization for the Advancement of Structured Information Standards (OASIS), for enabling

businesses to publish service listings and discover each other, and to define how the services or

software applications interact over the Internet.

UDDI was originally proposed as a core Web service standard .[1] It is designed to be
interrogated by SOAP messages and to provide access to Web Services Description Language
(WSDL) documents describing the protocol bindings and message formats required to interact
with the web services listed in its directory.

A UDDI business registration consists of three components:

 White Pages — address, contact, and known identifiers;
 Yellow Pages — industrial categorizations based on standard taxonomies;
 Green Pages — technical information about services exposed by the business.

White Pages

White pages give information about the business supplying the service. This includes
the name of the business and a description of the business - potentially in multiple
languages. Using this information, it is possible to find a service about which some
information is already known (for example, locating a service based on the provider's

name).
[6]

Contact information for the business is also provided - for example the businesses
address and phone number; and other information such as the Dun & Bradstreet
Universal umbering System number.

Yellow Pages

Yellow pages provide a classification of the service or business, based on standard
taxonomies. These include the Standard Industrial Classification (SIC), the North
American Industry Classification System (NAICS),

[6]
 or the United Nations Standard

Products and Services Code (UNSPSC) and geographic taxonomies.

Because a single business may provide a number of services, there may be several
Yellow Pages (each describing a service) associated with one White Page (giving
general information about the business).

Green Pages

Green pages are used to describe how to access a Web Service, with information on
the service bindings. Some of the information is related to the Web Service - such as
the address of the service and the parameters, and references to specifications of

interfaces.
[6]

 Other information is not related directly to the Web Service - this includes
e-mail, FTP,CORBA and telephone details for the service. Because a Web Service may
have multiple bindings (as defined in its WSDL description), a service may have multiple
Green Pages, as each binding will need to be accessed diferently.

UDDI Nodes & Registry

UDDI nodes are servers which support the UDDI specification and belong to a UDDI
registry while UDDI registries are collections of one or more nodes.

SOAP is an XML-based protocol to exchange messages between a requester and a
provider of a Web Service. The provider publishes the WSDL to UDDI and the requester
can join to it using SOAP.

UDDI Technical Architecture: -

The UDDI technical architecture consists of three parts:

UDDI data model:

An XML Schema for describing businesses and web services. The data model is described in
detail in the "UDDI Data Model" section.

UDDI API Specification:

A Specification of API for searching and
publishing UDDI data.

UDDI cloud services:

This is operator sites that provide
implementations of the UDDI specification
and synchronize all data
on a scheduled basis.

The UDDI Business Registry (UBR), also known as the Public Cloud, is a conceptually single
system built from multiple nodes that has their data synchronized through replication.

The current cloud services provide a logically centralized, but physically distributed, directory. This means that
data submitted to one root node will automatically be replicated across all the other root nodes. Currently,
data replication occurs every 24 hours.

UDDI cloud services are currently provided by Microsoft and IBM. Ariba had originally planned to offer an
operator as well, but has since backed away from the commitment. Additional operators from other
companies, including Hewlett-Packard, are planned for the near future. It is also possible to set up private
UDDI registries. For example, a large company may set up its own private UDDI registry for registering all
internal web services. As these registries are not automatically synchronized with the root UDDI nodes, they
are not considered part of the UDDI cloud.

UDDI Data Model

UDDI includes an XML Schema that describes four five data structures:

 businessEntity
 businessService
 bindingTemplate
 tModel
 publisherAssertion



businessEntity data structure:
The business entity structure represents the provider of web services. Within the UDDI
registry, this structure contains information about the company itself, including contact
information, industry categories, business identifiers, and a list of services provided.
Here is an example of a fictitious business's UDDI registry entry:

32

businessService data structure:

The business service structure represents an individual web service provided by the
business entity. Its description includes information on how to bind to the web service,
what type of web service it is, and what taxonomical categories it belongs to:

Here is an example of a business service structure for the Hello World web service.

Notice the use of the Universally Unique Identifiers (UUIDs) in
the businessKey and serviceKeyattributes. Every business entity and business service is uniquely
identified in all UDDI registries through the UUID assigned by the registry when the information is
first entered.

bindingTemplate data structure:

Binding templates are the technical descriptions of the web services represented by the

business service structure. A single business service may have multiple binding templates. The
binding template represents the actual implementation of the web service.

Here is an example of a binding template for Hello World.

Because a business service may have multiple binding templates, the service may specify
different implementations of the same service, each bound to a different set of protocols or
a different network address.

tModel data structure:

The tModel is the last core data type, but potentially the most difficult to grasp. tModel
stands for technical model.

A tModel is a way of describing the various business, service, and template structures
stored within the DDI registry. Any abstract concept can be registered within UDDI as a
tModel. For instance, if you define a new WSDL port type, you can define a tModel that
represents that port type within UDDI. Then, you can specify that a given business service
implements that port type by associating the tModel with one of that business service's
binding templates.

Here is an example of A tModel representing the HelloWorldInterface port type

 publisherAssertion data structure:

This is a relationship structure putting into association two or more businessEntity
structures according to a specific type of relationship, such as subsidiary or department.

The publisherAssertion structure consists of the three elements fromKey (the first
businessKey), toKey (the second businessKey) and keyedReference.

The keyedReference designates the asserted relationship type in terms of a keyName
keyValue pair within a tModel, uniquely referenced by a tModelKey.

35

36

37

UDDI—A Global Registry of Web Services
UDDI is a public registry designed to house information about businesses and their services

in a structured way. Through UDDI, one can publish and discover information about a

business and its Web Services. This data can be classified using standard taxonomies so

that information can be found based on categorization. Most importantly, UDDI contains

information about the technical interfaces of a business's services. Through a set of SOAP-

based XML API calls, one can interact with UDDI at both design time and run time to

discover technical data, such that those services can be invoked and used. In this way, UDDI

serves as infrastructure for a software landscape based on Web Services.
Why UDDI? What is the need for such a registry? As we look towards a software landscape
of thousands—perhaps millions—of Web Services, s me t ugh challenges emerge:

 How are Web Services discovered? 

 How is this information categorized in a meaningful way? 

 What implications are there for localization?


 What implications are there around proprietary technologies? How can I guarantee
interoperability in the discovery mechanism? 

 How can I interact with such a discovery mechanism at run time once my
application is dependent upon a web Service?

In response to these challenges, the UDDI initiative emerged. A number of companies,

including Microsoft, IBM, Sun, Oracle, Compaq, Hewlett Packard, Intel, SAP, and over three

hundred other companies (see DDI: Community for a complete list), came together to

develop a specification based on open standards and non-proprietary technologies to solve

these challenges. he result, initially launched in beta December 2000 and in production by

May 2001, was a global business registry hosted by multiple operator nodes that users

could—at no cost—both search and publish to.
With such an infrastructure for Web Services in place, data about Web Services can now be

found consistently and reliably in a universal, completely vendor-neutral capacity. Precise

categorical searches can be performed using extensible taxonomy systems and

identification. Run-time UDDI integration can be incorporated into applications. As a result,

a Web Services software environment can flourish.

38

WSDL and UDDI
WSDL has emerged as an important piece of the Web Services protocol stack. As such, it is

important to grasp how UDDI and WSDL work together and how the notion of interfaces vs.

implementations is part of each protocol. Both WSDL and UDDI were designed to clearly

delineate between abstract meta-data and concrete implementations, and understanding

the implications of the division is essential to understanding WSDL and UDDI.
For example, WSDL makes a clear distinction between messages and ports: Messages, the

required syntax and semantics of a Web Service, are always abstract, while ports, the

network address where the Web Service can be invoked, are always concrete. One is not

required to provide port information in a WSDL file. A WSDL can contain solely abstract

interface information and not provide any concrete implementation data. Such a WSDL file

is considered valid. In this way, WSDL files are decoupled from implementations.
One of the most exciting implications of this is that there can be multiple implementations

of a single WSDL interface. This design allows disparate systems to write implementations

of the same interface, thus guaranteeing that the systems can talk to one another. If three

different companies have implemented the same WSDL file, and a piece of client software

has created the proxy/stub code from that WSDL interface, then the client software can

communicate with all three of those implementations with the same code base by simply

changing the access point.
UDDI draws a similar distinction between abstraction and implementation with its concept

of tModels. The tModel structure, short for "Technology Model", represents technical

fingerprints, interfaces and abstract types of meta-data. Corollary with tModels are binding

templates, which are the concrete implementation of one or more tModels. Inside a binding

template, one registers the access point for a particular implementation of a tModel. Just as

the schema for WSDL allows one to decouple interface and implementation, UDDI provides

a similar mechanism, because tModels can be published separately from binding templates

that reference them. For example, a standards body or industry group might publish the

canonical interface for a particular industry, and then multiple businesses could write

implementations to this interface. Accordingly, each of those businesses' implementations

would refer to that same tModel. WSDL files are perfect examples of a UDDI tModel.

Registering with UDDI
Publishing to UDDI is a relatively straightforward process. The first step is to determine some basic information about how to model your
company and its services in UDDI. Once that is determined, the next step is to actually perform the registration, which can be done either
through a Web-based user interface or programmatically. The final step is to test your entry to insure that it was correctly registered and
appears as expected in different types of searches and tools.

Step 1: Modeling Your UDDI Entry
Considering the data model outlined above, several key pieces of data need to be collected
before establishing a UDDI entry.

39

1. Determine the tModels (WSDL files) that your Web Service implementations use.

Simliar to developing a COM component, your Web Service has been developed

either based on an existing interface, or using an interface you designed yourself. In

the case of a Web Service based on an existing WSDL, you will need to determine if

that WSDL file has been registered in UDDI. If it has, you will need to note its name

and tModelKey, which is the GUID generated by UDDI when that WSDL file was

registered.

2. Determine the categories appropriate to your services.

Just as a company can be categorized, Web Services can also be categorized. As such,
a company might be categorized at the business level as NAICS: Software
Publisher (51121), but its hotel booking Web Se vice might be catego ized at the
service level as NAICS: Hotels and Motels (72111).

Step Two: Registering Your UDDI Entry
Upon completion of the modeling exercise, the next step is to register your company. You

will need to obtain an account with a UDDI registry, which cannot be done

programmatically, as a Terms of Use statement must be agreed to. The Microsoft Node uses

Passport for its authentication, so you will need to have acquired a Passport

(http://www.passport.com/Consumer/default.asp) in order to proceed.
There are two options at this point: You can either use the Web user interface provided by

the Microsoft node, or you can register programmatically by issuing the SOAP API calls to

the node itself. If you don't expect to be making many changes to your entry, or if your

entry is relatively simple, using the Web user interface is sufficient. However, if you expect

to be making frequent updates, or your entry is more complex, scripting the registration

process using the Microsoft DDI SDK makes sense. Also, the Microsoft User Interface is not

localized for other languages, so if you want to take advantage of that feature of the UDDI

API, you will need to register programmatically.

Step Three: Searching UDDI For Your Entry
Three checks are worth performing once your entry is registered in UDDI. First, using the

Microsoft Web User Interface, search for your business based on its name and

categorizations to see it returned in the result sets. Second, open Visual Studio .NET and

ensure that it appears through the "Add Web

Reference" dialog. If it does not appear, it is likely that your tModel was not categorized

correctly using the uddi-org:types taxonomy explained above. You should be able to add

the Web Service to your project and generate the proxy code based on the WSDL file.

Lastly, after 24 hours, your entry will have replicated to the IBM node, which can be

searched from their UI at https://www-3.ibm.com/services/uddi/protect/find.

40

Web Services Notification (WSN):-

The Web Services Notification (WSN) defines a set of specifications that standardize the
way Web Services interact using the notification pattern. In the notification pattern, a Web
Service disseminates information to a set of other Web Services, without having to have
prior knowledge of these other Web Services. Characteristics of this pattern include:

 The Web Services that wish to consume information are registered with the Web Service

that is capable of distributing it. As part of this registration process they may provide some
indication of the nature of the information that they wish to receive. 

 The distributing Web Service disseminates information by sending one-way messages to
the Web Services that are registered to receive it. It is possible that more than one Web
Service is registered to consume the same information. In such cases, each Web Service
that is registered receives a separate copy of the information.


 The distributing Web Service may send any number of messages to each registered Web

Service; it is not limited to sending just a single message.

41

UNIT -5

A DESCRIPTION OF WEB SERVICES :-

Each Web service has a machine processable description written in Web Services

Description Language (WSDL), which is “an XML format for describing network services as a
set of endpoints operating on messages containing either document-oriented or procedure-
oriented information”8. This WSDL file can be sent directly to perspective users, or
published in the UDDI registries. Upon a successful inquiry to a UDDI registry, the WSDL
link about the target Web service will be returned to the requested , describing core
information about the contents and providing information on how to communicate (or
bind) with the target Web service.

SOA Architecture

Service-oriented architecture (SOA) allows different ways to develop applications by

combining services. The main premise of SOA is to erase application boundaries and

technlogy differences. As applications are opened up, how we can combine these services

securely becomes an issue. Traditionally, security models have been hardcoded into

applications and when capabilities of an application are opened up for use by other

applications, the security models built into each application may not be good enough.

Several emerging technologies and standards address different aspects of the problem of

security in SOA. Standards such as WS-Security, SAML, S-Trust, S-SecureConversation

and WS-SecurityPolicy focus on the security and identity management aspects of SOA

implementations that use Web services. Technologies such as virtual organization in grid

computing, application-oriented networking (AON) and XML gateways are addressing the

problem of SOA security in the larger context.

XML gateways are hardware or software based solutions for enforcing identity and security

for SOAP, XML, and REST based web services, usually at the network perimeter. An XML

gateway is a dedicated application which allows for a more centralized approach to security

and identity enforcement, similar to how a protocol firewall is deployed at the perimeter of a

network for centralized access control at the connection and port level.

XML Gateway SOA Security features include PKI, Digital Signature, encryption, XML

Schema validation, antivirus, and pattern recognition. Regulatory certification for XML

gateway security features are provided by FIPS and United States Department of Defense.

Web Services Security (WS-Security, WSS):-

It is an extension to SOAP to apply security to Web services. It is a member of the Web
service specifications and was published byOASIS.

The protocol specifies how integrity and confidentiality can be enforced on messages
and allows the communication of various security token formats, such as Security
Assertion Markup Language (SAML), Kerberos, and X.509. Its main focus is the use of
XML Signature and XML Encryption to provide end-to-end security.

USE Case

End-to-end Security

If a SOAP intermediary is required, and the intermediary is not or is less trusted, messages need to
be signed and optionally encrypted. This might be the case of an application-level proxy at a
network perimeter that will terminate TCP connections.

Non-repudiation

The standard method for non-repudiation is to write transactions to an audit trail that is
subject to specific security safeguards. However, if the audit trail is not sufficient, digital
signatures may provide a better method to enforce non-repudiation. WS-Security can
provide this.

Alternative transport bindings

Although almost all SOAP services implement HTTP bindings, in theory other bindings such
as JMS or SMTP could be used; in this case end-to-end security would be required.

Reverse proxy/common security token

Even if the web service relies upon transport layer security, it might be required for the
service to know about the end user, if the service is relayed by a (HTTP-) reverse proxy. A
WSS header could be used to convey the end user's token, vouched for by the reverse
proxy.

Security Topologies:-

One of the most essential portions of information security is the design and topology of

secure networks. What exactly do we mean by “topology?” Usually, a geographic diagram of

a network comes to mind. However, in networking, topologies are not related to the

physical arrangement of equipment, but rather, to the logical connections that act between

the different gateways, routers, and servers. We will take a closer look at some common

security topologies.

With network security becoming such a hot topic, you may have come under the

microscope about your firewall and network security configuration. You may have even

been assigned to implement or reassess a firewall design. In either case, you need to be

familiar with the most common firewall configurations and how they can increase security.

In this article, I will introduce you to some common firewall configurations and some best

practices for designing a secure network topology.

Setting up a firewall security strategy

At its most basic level, a firewall is some sort of hardware or software that filters traffic between
your company’s network and the Internet. With the large number of hackers roaming the Internet
today and the ease of downloading hacking tools, every network should have a security policy that
includes a firewall design.

If your manager is pressuring you to make sure that you have a strong firewall in place and
to generally beef up network security, what is your next move? Your strategy should be
two fold:

 Examine your network and take account of existing security mechanisms (routers with access

lists, intrusion detection, etc.) as part of a firewall and security plan.

 Make sure that you have a dedicated firewall solution by purchasing new equipment and/or

software or upgrading your current systems.

Keep in mind that a good firewall topology involves more than simply filtering network

traffic. It should include:

 A solid security policy.
 Traffic checkpoints.
 Activity logging.
 Limiting exposure to your internal network.

Before purchasing or upgrading your dedicated firewall, you should have a solid security

policy in place. A firewall will enforce your security policy, and by having it documented,

there will be fewer questions when configuring your firewall to reflect that policy. Any

changes made to the firewall should be amended in the security policy.

One of the best features of a well-designed firewall is the ability to funnel traffic through
checkpoints. When you configure your firewall to force traffic (outbound and inbound)

through specific points in your firewall, you can easily monitor your logs for normal and
suspicious activity.

 How do you monitor your firewall once you have a security policy and checkpoints

configured? By using alarms and enabling logging on your firewall, you can easily monitor

all authorized and unauthorized access to your network. You can even purchase third-party

utilities to help filter out the messages you don't need. It's also a good practice to hide your

internal network address scheme from the outside world. It is never wise to let the outside

world know the layout of your network.
Demilitarizedzone (DMZ) topology

A DMZ is the most common and secure firewall topology. It is often referred to as a
screened subnet. A DMZ creates a secure space between your Internet and your network, as
shown in Figure D.

A DMZ will typically contain the following:

 Web server

 Mail server 

 Application gateway 
 E-commerce systems (It should contain only your front-end systems.

Your back-end systems should be on your internal network.)

XML and Web Services Security Standards:-

XML and Web services are widely used in current distributed systems. The security of the

XML based communication, and the Web services themselves, is of great importance to the

overall security of these systems. Furthermore, in order to facilitate interoperability, the

security mechanisms should preferably be based on established standards. In this paper we

provide a tutorial on current security standards for XML and Web services. The discussed

standards include XML Signature, XML Encryption, the XML Key Management Specification

(XKMS), WS-Security, WS-Trust, WS-SecureConversation, Web Services Policy, WS-

SecurityPolicy, the eXtensible Access Control Markup Language (XACML), and the Security

Assertion Markup Language (SAML).

What Is an XML Web Service?
XML Web services are the fundamental building blocks in the move to distributed

computing on the Internet. Open standards and the focus on communication and

collaboration among people and applications have created an environment where XML

Web services are becoming the platform for application integration. Applications are

constructed using multiple XML Web services from various sources that work together

regardless of where they reside or how they were implemented.
There are probably as many definitions of XML Web Service as there are companies
building them, but almost all definitions have these things in common:

 XML Web Services expose useful functionality to Web users through a standard Web

protocol. In most cases, the protocol used is SOAP.

 XML Web services provide a way to describe their interfaces in enough detail to
allow a user to build a client application to talk to them. This description is usually
provided in an XML document called a Web Services Description Language (WSDL)
document.



 XML Web services are registered so that potential users can find them easily. This is
done with Universal Discovery Description and Integration (UDDI).

I'll cover all three of these technologies in this article but first I want to explain why you
should care about XML Web services.
One of the primary advantages of the XML Web services architecture is that it allows

programs written in different languages on different platforms to communicate with each

other in a standards-based way. Those of you who have been around the industry a while

are now saying, "Wait a minute! Didn't I hear those same promises from CORBA and before

that DCE? How is this any different?" The first difference is that SOAP is significantly less

complex than earlier approaches, so the barrier to entry for a standards-compliant SOAP

implementation is significantly lower. Paul Kulchenko maintains a list of SOAP

implementations which at last count contained 79 entries. You'll find SOAP

implementations from most of the big software companies, as you would expect, but you

will also find many implementations that are built and maintained by a single developer.

The other significant advantage that XML Web services have over previous efforts is that

they work with standard Web protocols—XML, HTTP and TCP/IP. A significant number of

companies already have a Web infrastructure, and people with knowledge and experience

in maintaining it, so again, the cost of entry for XML Web services is significantly less than

previous technologies.

We've defined an XML Web service as a software service exposed on the Web through

SOAP, described with a WSDL file and registered in UDDI. The next logical question is.

"What can I do with XML Web services?" The first XML Web services tended to be

information sources that you could easily incorporate into applications—stock quotes,

weather forecasts, sports scores etc. It's easy to imagine a whole class of applications that

could be built to analyze and aggregate the information you care about and present it to

you in a variety of ways; for example, you might have a Microsoft® Excel spreadsheet that

summarizes your whole financial picture—stocks, 401K, bank accounts, loans, etc. If this

information is available through XML Web services, Excel can update it continuously. Some

of this information will be free and some might require a subscription to the service. Most

of this information is available now on the Web, but XML Web services will make

programmatic access to it easier and more reliable.
Exposing existing applications as XML Web services will allow users to build new, more
powerful applications that use XML Web services as building blocks. For example, a user
might develop a purchasing application to automatically obtain price information from a
variety of vendors, allow the user to select a vendor, submit the order and then track the
shipment until it is received. The vendor application, in addition to exposing its services on
the Web, might in turn use XML Web services to check the customer's credit, charge the
customer's account and set up the shipment with a shipping company.

In the future, some of the most interesting XML web services will support applications that

use the Web to do things that can't be done today. For example, one of the services that

XML Web Services would make possible is a calendar service. If your dentist and mechanic

exposed their calendars through this XML web service, you could schedule appointments

with them on line or they could schedule appointments for cleaning and routine

maintenance directly in your calendar if you like. With a little imagination, you can envision

hundreds of applications that can be built once you have the ability to program the Web.

SOAP

Soap is the communications protocol for XML Web services. When SOAP is described as a communications

protocol, most people think of DCOM or CORBA and start asking things like, "How does SOAP do object

activation?" or "What naming service does SOAP use?" While a SOAP implementation will probably include these

things, the SOAP standard doesn't specify them. SOAP is a specification that defines the XML format for

messages— and that's about it for the required parts of the spec. If you have a well-formed XML fragment

enclosed in a couple of SOAP elements, you have a SOAP message. Simple isn't it? There are other parts of the

SOAP specification that describe how to represent program data as XML and how to use SOAP to do Remote

Procedure Calls. These optional parts ofthe specification are used to implement RPC-style

applications where a SOAP message containing a callable function, and the parameters to

pass to the function, is sent from the client, and the server returns a message with the

results of the executed function. Most current implementations of SOAP support RPC

applications because programmers who are used to doing COM or CORBA applications

understand the RPC style. SOAP also supports document style applications where the SOAP

message is just a wrapper around an XML document. Document-style SOAP applications

are very flexible and many new XML Web services take advantage of this flexibility to build

services that would be difficult to implement using RPC.

The last optional part of the SOAP specification defines what an HTTP message that

contains a SOAP message looks like. This HTTP binding is important because HTTP is

supported by almost all current OS's (and many not-so-current OS's). The HTTP binding is

optional, but almost all SOAP implementations support it because it's the only standardized

protocol for SOAP. For this reason, there's a common misconception that SOAP requires

HTTP. Some implementations support MSMQ, MQ Series, SMTP, r TCP/IP transports, but

almost all current XML Web services use HTTP because it is ubiquitious. Since HTTP is a

core protocol of the Web, most organizations have a network infrastructure that supports

HTTP and people who understand how to manage it already. The security, monitoring, and

load-balancing infrastructure for HTTP are readily available today.
A major source of confusion when getting started with SOAP is the difference between the

SOAP specification and the many implementations of the SOAP specification. Most people

who use SOAP don't write SOAP messages directly but use a SOAP toolkit to create and

parse the SOAP messages. These toolkits generally translate function calls from some kind

of language to a SOAP message. For example, the Microsoft SOAP Toolkit 2.0 translates

COM function calls to SOAP and the Apache Toolkit translates JAVA function calls to SOAP.

The types of function calls and the data types of the parameters supported vary with each

SOAP implementation so a function that works with one toolkit may not work with another.

This isn't a limitation of SOAP but rather of the particular implementation you are using.

By far the most compelling feature of SOAP is that it has been implemented on many different hardware and

software platforms. This means that SOAP can be used to link disparate systems within and without your

organization. Many attempts have been made in the past to come up with a common communications protocol

that could be used for systems integration, but none of them have had the widespread adoption that SOAP has.

Why is this? Because SOAP is much smaller and simpler to implement than many of the previous protocols. DCE

and CORBA for example took years to implement, so only a few implementations were ever released. SOAP,

however, can use existing XML Parsers and HTTP libraries to do most of the hard work, so a SOAP implementation

can be completed in a matter of months. This is why there are more than 70 SOAP implementations available.

SOAP obviously doesn't do everything that DCE or CORBA do, but the lack of complexity in exchange for features is

what makes SOAP so readily available. The ubiquity of HTTP and the simplicity of SOAP make them

an ideal basis for implementing XML Web services that can be called from almost any

environment. For more information on SOAP.

What About Security?

One of the first questions newcomers to SOAP ask is how does SOAP deal with security.

Early in its development, SOAP was seen as an HTTP-based protocol so the assumption was

made that HTTP security would be adequate for SOAP. After all, there are thousands of

Web applications running today using HTTP security so surely this is a equate for SOAP.

For this reason, the current SOAP standard assumes security is a transport issue and is

silent on security issues.
When SOAP expanded to become a more general-purpose protocol running on top of a

number of transports, security became a bigger issue. For example, HTTP provides several

ways to authenticate which user is making a SOAP call, but how does that identity get

propagated when the message is routed from HTTP to an SMTP transport? SOAP was

designed as a building-block protocol, so fortunately, there are already specifications in the

works to build on SOAP to provide additional security features for Web services. The WS-

Security specification defines a complete encryption system.

WSDL

WSDL (often pronounced whiz -dull) stands for Web Services Description Language. For

our purposes, we can say that a WSDL file is an XML document that describes a set of SOAP

messages and how the messages are exchanged. In other words, WSDL is to SOAP what IDL

is to CORBA or COM. Since WSDL is XML, it is readable and editable but in most cases, it is

generated and consumed by software.

To see the value of WSDL, imagine you want to start calling a SOAP method provided by

one of your business partners. You could ask him for some sample SOAP messages and

write your application to produce and consume messages that look like the samples, but

this can be error-prone. For example, you might see a customer ID of 2837 and assume it's

an integer when in fact it's a string. WSDL specifies what a request message must contain

and what the response message will look like in unambiguous notation.
The notation that a WSDL file uses to describe message formats is based on the XML

Schema standard which means it is both programming-language neutral and standards-

based which makes it suitable for describing XML Web services interfaces that are

accessible from a wide variety of platforms and programming languages. In addition to

describing message contents, WSDL defines where the service is available and what

communications protocol is used to talk to the service. This means that the WSDL file

defines everything required to write a program to work with an XML Web service. There

are several tools available to read a WSDL file and generate the code required to

communicate with an XML Web service. Some of the most capable of these tools are in

Microsoft Visual Studio® .NET.
Many current SOAP toolkits include tools to generate WSDL files from existing program

interfaces, but there are few tools for writing WSDL directly, and tool support for WSDL

isn't as complete as it should be. It shouldn't be long before tools to author WSDL files, and

then generate proxies and stubs much like COM IDL tools, will be part of most SOAP

implementations. At that point, WSDL will become the prefered way to author SOAP

interfaces for XML Web services.

UDDI

Universal Discovery Description and Integration is the yellow pages of Web services. As

with traditional yellow pages, you can search for a company that offers the services you

need, read about the service offered and contact someone for more information. You can, of

course, offer a Web service without registering it in UDDI, just as you can open a business

in your basement and rely on word -of- mouth advertising but if you want to reach a

significant market, you need UDDI so your customers can find you.
A UDDI directory entry is an XML file that describes a business and the services it offers.

There are three parts to an entry in the UDDI directory. The "white pages" describe the

company offering the service: name, address, contacts, etc. The "yellow pages" include

industrial categories based on standard taxonomies such as the North American Industry

Classification System and the Standard Industrial Classification. The "green pages" describe

the interface to the service in enough detail for someone to write an application to use the

Web service. The way services are defined is through a

UDDI document called a Type Model or tModel. In many cases, the tModel contains a WSDL

file that describes a SOAP interface to an XML Web service, but the tModel is flexible

enough to describe almost any kind of service.
The UDDI directory also includes several ways to search for the services you need to build

your applications. For example, you can search for providers of a service in a specified

geographic location or for business of a specified type. The UDDI directory will then supply

information, contacts, links, and technical data to allow you to evaluate which services

meet your requirements.

UDDI allows you to find businesses you might want to obtain Web services from. What if you already know whom

you want to do business with but you don't know what services are offered? The WS-Inspection
specification allows you to browse through a collection of XML Web services offered on a
specific server to find which ones might meet your needs.

Semantic interpolation:-

he problem of interpolation is a classical problem in logic. Given a consequence relation |~

and two formulas and ψ with |~ ψ we try to find a “simple" formula α such that |~ α |~ ψ.

“Simple" is defined here as “expressed in the common language of and ψ". Non-monotonic

logics like preferential logics are often a mixture of a non-monotonic part with classical

logic. In such cases, it is natural examine also variants of the interpolation problem, like: is

there “simple" α such that α |~ ψ where is classical consequence? We translate the

interpolation problem from the syntactic level to the semantic level. For example, the

classical interpolation problem is now the question whether there is some “simple" model

set X such that M() X M(ψ). We can show that such X always exist f monotonic and anti

tonic logics. The case of non-monotonic logics is more complicated, there are several

variants to consider, and we mostly have only partial results.

Service-Oriented Architecture (SOA):-

A service-oriented architecture is essentially a collection of services. These services
communicate with each other. The communication can involve either simple data passing
or it could involve two or more services coordinating some activity. Some means of
connecting services to each other is needed.

Service-oriented architectures are not a new thing. The first service-oriented architecture
for many people in the past was with the use DCOM or Object Request Brokers (ORBs)
based on the CORBA specification. For more on DCOM and CORBA

Services

If a service-oriented architecture is to be effective, we need a clear understanding of the
term service. A service is a function that is well-defined, self-contained, and does not
depend on the context or state of other services. See Service.

Connections

The technology of Web Services is the most likely connection technology of service-

oriented architectures. The following figure illustrates a basic service-oriented

architecture. It shows a service consumer at the right sending a service request message to

a service provider at the left. The service provider returns a response message to

theservice consumer. The request and subsequent response connections are defined in

some way that is understandable to both the service consumer and service provider. How

those connections are defined is explained in Web Services Explained. A service provider

can also be a service consumer.

Metadata

Metadata can be defined as a set of assertions about things in our domain of

discourse. Metadata is a component of data, which describes the data. It is " data about
data". Often there is more than that, involving information about data as they is stored
managed ,and revealing partial semantics such as intended use (i.e., application) of data.
This information can be of broad variety, meeting if not surpassing the variety in the data
themselves. They may describe, or be a summary of the information content of the
individual databases in an intentional manner. Some metadata may also capture content
independent information like location and time of creation.
Metadata descriptions present two advantages [2]:
• They enable the abstraction of representational details such as the format and

organization of data, and capture the information content of the underlying data

independent of representational details. This represents the first step in reduction of

information overload, as intentional metadata descriptions are in general an order of

magnitude smaller than the underlying data.
• They enable representation of domain knowledge describing the information domain to

which the underlying data belong. This knowledge may then be used to make inferences

about the underlying data. This helps in reducing information overload as the inferences

may be used to determine the relevance of the underlying data without accessing the data.

Metadata can be classified based on different
criteria. Based on the level of abstraction in which a
metadata describes content, the metadata can be
classified as follows [9]:

• Syntactic Metadata focuses on details of the data source

(document) providing little insight into the data. This

kind of metadata is useful mainly for categorizing

or cataloguing the data source. Examples if

syntactic metadata include language of the data

source, creation date, title, size, format etc.

• Structural Metadata focuses on the structure of the

document data, which facilitates data storage, processing and

presentation such as navigation, eases Book Chapter,

Datenbanken und Informationssysteme, Festschrift

zum 60. Geburtstag von Gunter Schlageter,

Publication Hagen, October 2003-09-26

3. information retrieval, and improves display. E.g. XML schema, the physical structure of
the document like page images etc.

• Semantic Metadata describes contextually relevant information focusing on domain-

specific elements based on ontology, which a user familiar with the domain is likely to

know or understand easily. Using semantic metadata, meaningful interpretation of data is

possible and interoperability will then be supported at high-level (hence easier to use),

providing meaning to the underlying syntax and structure.

Metadata in WSDL and UDDI standards:-

The standards such as WSDL [14] and UDDI are used to share the metadata about a web

service. Each standard provides metadata about services at a certain level of abstraction.

WSDL describes the service using the implementation details and hence it can be

considered as a standard to represent the metadata of the invocation details of service. As

the purpose of UDDI is to locate WSDL descriptions, it can be thought of as a standard for

publishing and discovering metadata of web services. Considering the details in WSDL and

UDDI as metadata of a Web service, the different kind of metadata of Web services

available in different standards can be categorized as shown in Table 1.

Semantics for Web Services:-
In the previous section, we discussed different kinds of metadata available in WSDL and
UDDI. Section 2 discussed the power of semantic metadata. In Web services domain,
semantics represented by the semantic metadata can be classified into the following types
[21], namely
o Functional Semantics
o Data Semantics

o QoS Semantics and
o Execution Semantics
These different types of semantics can be used to represent the capabilities,
requirements, effects and execution pattern of a Webservice. The semantic Web
research focuses to date as focused on the data semantics that helps in semantic
tagging of static information available on the Web from all kind of sources. Research
on semantic Web services on the other hand is based on the findings and results
from the semantic Web research to apply for services that perform some action
producing an effect. Unlike information retrieval,

Enterprise Management Framework (EMF)

The Hirsch Enterprise Management Framework, or EMF, is an IIS-based
application that provides a browser interface to portions of the Hirsch Velocity
application for user convenience and enterprise system consolidation.

EMF allows operators with occasional need to access the Velocity application to
add delete a user, view events or run reports from a browser, rather than the full
Velocity client. It allows
allows users with multiple Velocity servers to manage users across one more
servers, view events from one or more servers, and run activity reports across one
or more servers.

